PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Injury prediction models for onshore road network development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Integrating different modes of transport (road, rail, air and water) is important for port cities. To accommodate this need, new transport hubs must be built such as airports or sea ports. If ports are to grow, they must be accessible, a feature which is best achieved by building new roads, including fast roads. Poland must develop a network of fast roads that will provide good access to ports. What is equally important is to upgrade the network of national roads to complement fast roads. A key criterion in this case is to ensure that the roads are efficient to minimise time lost for road users and safe. With safety standards and safety management practices varying vastly across the EU, Directive 2008/96/EC of the European Parliament and of the Council was a way to ensure that countries follow procedures for assessing the impact of road projects on road safety and conduct road safety audits, road safety management and road safety inspections. The main goal of the research was to build mathematical models to combine road safety measures, i.e. injury density (DI) and accident density (DA), with road and traffic factors on longer sections, all based on risk analysis. The practical objective is to use these models to develop tools for assessing how new road projects will impact road safety. Because previous research on models to help estimate injuries (I) or injury density (DI) on long sections was scarce, the authors addressed that problem in their work. The idea goes back to how Poland is introducing procedures for assessing the effects of infrastructure on safety and developing a method to estimate accident indicators to support economic analysis for new roads, a solution applied in JASPERS. Another reason for the research was Poland’s insufficient and ineffective pool of road safety management tools in Poland. The paper presents analyses of several models which achieved satisfactory results. They are consistent with the work of other researchers and the outcomes of previous research conducted by the authors. The authors built the models based on a segmentation of national roads into sections from 10 to 50 km, making sure that they feature consistent cross-sections and average daily traffic volumes. Models were built based on the method described by Jamroz (Jamroz, 2011). Using the available road traffic volume data, each section was assigned variables defining geometric and traffic features. Based on studies conducted on road sections, the variables were either averaged over the entire length of the section or calculated as a percentage of the variable occurring over the entire length: related to traffic volume, roadside environment or cross section.
Rocznik
Tom
Strony
93--103
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Faculty od Civil and Environmental Engineering Narutowicza 11, 80-233 Gdansk Poland
  • Gdańsk University of Technology Faculty od Civil and Environmental Engineering Narutowicza 11, 80-233 Gdansk Poland
  • Gdańsk University of Technology Faculty od Civil and Environmental Engineering Narutowicza 11, 80-233 Gdansk Poland
  • Gdańsk University of Technology Faculty od Civil and Environmental Engineering Narutowicza 11, 80-233 Gdansk Poland
Bibliografia
  • 1. AASHTO, 2010. Highway Safety Manual. American Association of State Highway and Transportation Officials, Washington.
  • 2. Abdel-Aty, M., Radwan, A.E., 2000a. Developing crash predictive models for a principal arterial, in: Traffic Safety on Two Continents. pp. 177–194.
  • 3. Abdel-Aty, M., Radwan, A.E., 2000b. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5 , 633–42.
  • 4. Abdel-Aty, M., Radwan, A.E., 2000c. Modeling traffic accident occurrence and involvement. Accid. Anal. Prev. 32 5 , 633–42.
  • 5. Al-ghamdi, A.S., 2002. Using logistic regression to estimate the influence of accident factors on accident severity. Accid. Anal. Prev. 34, 729–741.
  • 6. Ambros, J., Sedoník, J., 2016. A Feasibility Study for Developing a Transferable Accident Prediction Model for Czech Regions. Transp. Res. Procedia 14, 2054–2063. doi:10.1016/J.TRPRO.2016.05.103
  • 7. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012a. A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 45, 628–33. doi:10.1016/j.aap.2011.09.015
  • 8. Anastasopoulos, P.C., Mannering, F., Shankar, V.N., Haddock, J.E., 2012b. A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 45, 628–33. doi:10.1016/j.aap.2011.09.015
  • 9. Anastasopoulos, P.C., Shankar, V.N., Haddock, J.E., Mannering, F., 2012c. A multivariate tobit analysis of highway accident-injury-severity rates. Accid. Anal. Prev. 45, 110–9. doi:10.1016/j.aap.2011.11.006
  • 10. Asgarzadeh, M., Verma, S., Mekary, R.A., Courtney, T.K., Christiani, D.C., 2017. The role of intersection and street design on severity of bicycle-motor vehicle crashes. Inj. Prev. 23 3 , 179–185. doi:10.1136/injuryprev-2016-042045
  • 11. Bared, J.G., Vogt, A., 1998. Accident models for two-lane rural roads: segments and intersections. Federal Highway Administration.
  • 12. Bhatia, R., Wier, M., Weintraub, J., Humphreys, E.H., Seto, E., 2009. An area-level model of vehicle-pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. doi:10.1016/j.aap.2008.10.001 13. Broughton, J., 1991. Forecasting road accident casualties in Great Britain. Accid. Anal. Prev. 23 5 , 353–362.
  • 14. Budzynski, M., Jamroz, K., Kustra, W., Gaca, S., Michalski, L., 2011. Instructions for road safety auditors – Part One Assessing the effects of road infrastructure projects on road safety, Part Two Road safety audit – for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk.
  • 15. Budzynski, M., Jamroz, K., Kustra, W., Zukowska, J., 2015. Modeling of traffic safety indicators on Polish national road network, in: Safety and Reliability of Complex Engineered Systems - Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015. pp. 23–30.
  • 16. Budzynski, M., Kustra, W., Jamroz, K., Gaca, S., Michalski, L., Guminska, L., 2013. Method for forecasting road safety indicators for the purposes of economic effectiveness analyses for projects on Poland’s national roads – for the GDDKiA. Gdansk University of Technology, Krakow University of Technology, Gdansk.
  • 17. Budzynski, M., Rys, D., Kustra, W., 2017. Selected Problems of Transport in Port Towns - Tri-City as an Example. Polish Marit. Res. 24 s1 , 16–24. doi:10.1515/pomr-2017-0016
  • 18. Cafiso, S., Di Graziano, A., Di Silvestro, G., La Cava, G., Persaud, B., 2010. Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables. Accid. Anal. Prev. 42 4 , 1072–9. doi:10.1016/j.aap.2009.12.015
  • 19. Council, F.M., Harwood, D.W., Hauer, E., Hughes, W.E., Vogt, A., 2000. Prediction of the Expected Safety Performance of Rural Two-Lane Highways. Federal Highway Administration.
  • 20. Deffenbacher, J.L., Lynch, R.S., Filetti, L.B., Dahlen, E.R., Oetting, E.R., 2003. Anger, aggression, risky behavior, and crash-related outcomes in three groups of drivers. Behav. Res. Ther. 41, 333–349. doi:10.1016/S0005-7967(02)00014-1
  • 21. Donmez, B., Boyle, L.N., Lee, J.D., 2007. Safety implications of providing real-time feedback to distracted drivers. Accid. Anal. Prev. 39 3 , 581–590. doi:10.1016/J.AAP.2006.10.003
  • 22. El-Basyouny, K., Sayed, T., 2009. Accident prediction models with random corridor parameters. Accid. Anal. Prev. 41 5 , 1118–23. doi:10.1016/j.aap.2009.06.025
  • 23. Elvik, R., 2008. The predictive validity of empirical Bayes estimates of road safety. Accid. Anal. Prev. 40 6 , 1964–9. doi:10.1016/j.aap.2008.07.007
  • 24. Fernandes, A., Neves, J., 2013a. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013 , 39–45. doi:10.1016/j.aap.2012.12.041
  • 25. Fernandes, A., Neves, J., 2013b. An approach to accidents modeling based on compounds road environments. Accid. Anal. Prev. 53 2013 , 39–45. doi:10.1016/j.aap.2012.12.041
  • 26. Garber, N.J., Lei, W., 2001. Stochastic Models Relating Crash Probabilities With Geometric And Corresponding Traffic Characteristics Data. University of Virginia, Charlottesville.
  • 27. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012a. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012 , 258–65. doi:10.1016/j.aap.2011.07.012
  • 28. Geedipally, S.R., Lord, D., Dhavala, S.S., 2012b. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accid. Anal. Prev. 45 2012 , 258–65. doi:10.1016/j.aap.2011.07.012
  • 29. Hakkert, S., 2011. EuroRAP evaluation experience alongside other measures in Israel, in: EuroRAP Plenary, Policy Seminar and Training Course, Belgrade.
  • 30. Hauer, E., 2007. Safety Models for Urban Four-lane Undivided Road Segments. Transp. Res. Rec. J. Transp. Res. Board 96–105 , 1–22.
  • 31. Hauer, E., 2004. Statistical Road Safety Modeling. Transp. Res. Rec. J. Transp. Res. Board 1897 May , 81–87. doi:10.3141/1897-11
  • 32. Hauer, E., 2001. Overdispersion in modelling accidents on road sections and in empirical bayes estimation. Accid. Anal. Prev. 33 6 , 799–808.
  • 33. Hauer, E., 1995. On exposure and accident rate. Traffic Eng. Control 36, 134–138.
  • 34. Hauer, E., 1986. On the estimation of the expected number of accidents. Accid. Anal. Prev. 18 1, 1–12. doi:10.1016/0001-4575(86)90031-X
  • 35. Hewson, P., 2004. Deprived children or deprived neighbourhoods? A public health approach to the investigation of links between deprivation and injury risk with specific reference to child road safety in Devon County, UK. BMC Public Health 4, 15. doi:10.1186/1471-2458-4-15
  • 36. Ivan, J.N., Garder, P.E., Deng, Z., Zhang, C., 2006. The effect of segment characteristics on the severity of head-on crashes on two-lane rural highways. University of Connecticut, University of Maine.
  • 37. Ivan, J.N., Lord, D., Washington, S.P., 2005. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accid. Anal. Prev. 37 1 , 35–46. doi:10.1016/j. aap.2004.02.004
  • 38. Iyinam, A.F., Iyinam, S., Ergun, M., 1997. Analysis of Relationship Between HighwaySafety and Road Geometric Design Elements : Turkish Case. Technical University of Istanbul.
  • 39. Jamroz, K., 2011. Method of risk management in highway engineering. Gdansk University of Technology, Gdansk.
  • 40. Jamroz, K., Kustra, W., 2011. The risk atlas of Poland ’ s national roads 2008-2010. Foundation for Development of Civil Engineering, Gdansk.
  • 41. Jurewicz, C., Steinmetz, L., 2012. Crash performance of safety barriers on high - speed roads. J. Australas. Coll. Road Saf. 23 3 .
  • 42. Kiec, M., 2009. The impact of the accessibility of the road on conditions and traffic safety - PhD thesis. Cracow University of Technology.
  • 43. Kustra, W., 2016. Modelling selected road safety measures on long road sections - thesis.
  • 44. Kustra, W., Budzynski, M., Jamroz, K., Zukowska, J., 2015. Modelling of traffic safety indicators on Polish national road network, in: ESREL 2015 25th European Safety and Reliability Conference. Zurich, p. 7.
  • 45. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011a. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1 , 220–7. doi:10.1016/j.aap.2010.08.013
  • 46. Lao, Y., Wu, Y.-J., Corey, J., Wang, Y., 2011b. Modeling animal-vehicle collisions using diagonal inflated bivariate Poisson regression. Accid. Anal. Prev. 43 1 , 220–7. doi:10.1016/j.aap.2010.08.013
  • 47. Lee, C., Hellinga, B., Saccomanno, F., 2006. Evaluation of variable speed limits to improve traffic safety. Transp. Res. Part C Emerg. Technol. 14 3 , 213–228. doi:10.1016/J. TRC.2006.06.002
  • 48. Lee, J., Mannering, F., 2002. Impact of roadside features on the frequency and severity of run-off-roadway accidents: an empirical analysis. Accid. Anal. Prev. 34 2 , 149–61.
  • 49. Li, R., Shang, P., 2014. Incident duration modeling using flexible parametric hazard-based models. Comput. Intell. Neurosci. 2014, 723427. doi:10.1155/2014/723427
  • 50. Litman, T., 2010. Transportation Elasticities, Transportation. Victoria Transport Policy Institute, Victoria.
  • 51. Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accid. Anal. Prev. 38 4 , 751–66. doi:10.1016/j.aap.2006.02.001
  • 52. Lord, D., Geedipally, S.R., 2012. Examining the Crash Variances Estimated by the Poisson-Gamma and ConwayMaxwell-Poisson Models. Transp. Res. Rec. J. Transp. Res. Board 2241 979 , 56–67.
  • 53. Lord, D., Park, B., 2012. Negative Binomial Regression Models and Estimation Methods, in: Probability Density and Likelihood Functions. Texas A&M University, Korea Transport Institute, pp. 1–15.
  • 54. Lord, D., Park, P.Y.-J., 2008. Investigating the effects of the fixed and varying dispersion parameters of Poisson-gamma models on empirical Bayes estimates. Accid. Anal. Prev. 40 4 , 1441–57. doi:10.1016/j.aap.2008.03.014
  • 55. Ma, J., Kockelman, K.M., Damien, P., 2008a. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3 , 964–75. doi:10.1016/j.aap.2007.11.002
  • 56. Ma, J., Kockelman, K.M., Damien, P., 2008b. A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. Accid. Anal. Prev. 40 3 , 964–75. doi:10.1016/j.aap.2007.11.002
  • 57. Mannering, F., Venkataraman, S., Woodrow, B., 1996. Statistical analysis of accident rural freeways. Accid. Anal. Prev. 28 3 , 391–401.
  • 58. Martinelli, F., La Torre, F., Vadi, P., 2009. Calibration of the Highway Safety Manual’s Accident Prediction Model for Italian Secondary Road Network. Transp. Res. Rec. J. Transp. Res. Board 2103, 1–9. doi:10.3141/2103-01
  • 59. Peer, E., Rosenbloom, T., 2013. When two motivations race: The effects of time-saving bias and sensation-seeking on driving speed choices. Accid. Anal. Prev. 50, 1135–1139. doi:10.1016/J.AAP.2012.09.002
  • 60. Ptak-Chmielewska, A., 2013. Generalised linear models. Warsaw School of Economic, Warsaw.
  • 61. Rakha, H., Arafeh, M., Abdel-Salam, A.G., Guo, F., Flintsch, A.M., 2010. Linear regression crash prediction models: issues and proposed solutions, Virginia Tech Transportation Institute.
  • 62. Reurings, M., Jannsen, T., Eenink, R., Elvik, R., Cardoso, J., Stefan, C., 2005. Accident Prediction Models and Road Safety Impact Assessment a state of the art, Ripcord. Ripcord - Iserest.
  • 63. Ryb, G.E., Dischinger, P.C., Kleinberger, M., McGwin, G., Griffin, R.L., 2013. Aortic injuries in newer vehicles. Accid. Anal. Prev. 59, 253–259. doi:10.1016/J.AAP.2013.06.007
  • 64. Schafer, J., 2006. Penn State Department of Statistics [WWW Document]. Dep. Stat. Eberly Coll. Sci. URL sites. stat.psu.edu
  • 65. Scott-Parker, B., Watson, B., King, M., Hyde, M., 2012. Young, Inexperienced, and on the Road. Transp. Res. Rec. J. Transp. Res. Board. doi:10.3141/2318-12
  • 66. Son, H. “Daniel,” Kweon, Y.-J., Park, B. “Brian,” 2011. Development of crash prediction models with individual vehicular data. Transp. Res. Part C Emerg. Technol. 19 6 , 1353–1363. doi:10.1016/j.trc.2011.03.002
  • 67. Technical Committee 18, 2004. Study on Risk Management for Roads. PIARC.
  • 68. The National Police Headquarters, 2015. SEWIK - Accident data base.
  • 69. Vaziri, M., 2010. A comparative appraisal of roadway accident for Asia-Pacific countries. Int. J. Eng. Trans. A Basics 23 2 , 111–126.
  • 70. Wood, G.R., 2005. Confidence and prediction intervals for generalised linear accident models. Accid. Anal. Prev. 37 2 , 267–73. doi:10.1016/j.aap.2004.10.005
  • 71. Xie, K., Wang, X., Huang, H., Chen, X., 2013. Corridor-level signalized intersection safety analysis in Shanghai, China using Bayesian hierarchical models. Accid. Anal. Prev. 50, 25–33. doi:10.1016/J.AAP.2012.10.003
  • 72. Yannis, G., Papadimitriou, E., Chaziris, A., Broughton, J., 2014. Modeling road accident injury under-reporting in Europe. Eur. Transp. Res. Rev. 6 4 , 425–438. doi:10.1007/ s12544-014-0142-4
  • 73. Ye, Z., Zhang, Y., Lord, D., 2013a. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78–86. doi:10.1016/j.aap.2012.11.007
  • 74. Ye, Z., Zhang, Y., Lord, D., 2013b. Goodness-of-fit testing for accident models with low means. Accid. Anal. Prev. 61, 78–86. doi:10.1016/j.aap.2012.11.007
  • 75. Zhang, W., Huang, Y.-H., Roetting, M., Wang, Y., Wei, H., 2006. Driver’s views and behaviors about safety in China— What do they NOT know about driving? Accid. Anal. Prev. 38 1, 22–27. doi:10.1016/J.AAP.2005.06.015
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65461a24-4b43-400d-b485-35693cd48d2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.