Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses the feasibility, effectiveness and validity of a gas turbine power plant, operated according to the Brayton comparative cycle in order to develop low-potential waste heat (160◦C) and convert it into electricity. Fourteen working fluids, mainly with organic origin have been examined. It can be concluded that low molecular weight working fluids allow to obtain higher power efficiency of Brayton cycle only if conversions without taking into account internal losses are considered. For the cycle that takes into account the compression conversion efficiency in the compressor and expansion in the gas turbine, the highest efficiency was obtained for the perfluoropentane working medium and other substances with relatively high molecular weight values. However, even for the cycle using internal heat recovery, the thermal efficiency of the Brayton cycle did not exceed 7%.
Czasopismo
Rocznik
Tom
Strony
103–--112
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, ORC Power Plants Research and Development Centre, al. Piastów 17, 70-310 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, ORC Power Plants Research and Development Centre, al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
- 1. Aboelwafa O., Fateen S.-E.K., Soliman A., Ismail I.M., 2018. A review on solar Rankine cycles: Working fluids, applications, and cycle modifications. Renew. Sustainable Energy Rev., 82, 868–885. DOI: 10.1016/j.rser.2017.09.097.
- 2. Bamorovat Abadi G., Yun E., Kim K.C., 2015. Experimental study of a 1 kW organic Rankine cycle with a zeotropic mixture of R245fa/R134a. Energy, 93, 2363–2373. DOI: 10.1016/j.energy.2015.10.092.
- 3. Bianchi M., Negri di Montenegro G., Peretto A., 2000. Inverted Brayton cycle employment for low-temperature cogenerative applications, ASME TURBOEXPO. Munich, Germany, 8–11 May 2000, paper No. 2000-GT-315. DOI: 10.1115/2000-GT-0315.
- 4. Borsukiewicz A., 2017. The use of organic zeotropic mixture with high temperature glide as a working fluid in medium-temperature vapour power plant. Therm. Science, 21, 1153–1160. DOI: 10.2298/TSCI141120088B.
- 5. Borsukiewicz-Gozdur A., 2013. Exergy analysis for maximizing power of organic Rankine cycle power plant driven by open type energy source. Energy, 62, 73–81. DOI: 10.1016/j.energy.2013.03.096.
- 6. Bulinski Z., Szczygiel I., Kabaj A., Krysi´nski T., Gładysz P., Czarnowska L., StanekW., 2018. Performance analysis of the small-scale a-type Stirling engine using computational fluid dynamics tools. J. Energy Resour. Technol., 140, 3. DOI: 10.1115/1.4037810.
- 7. Dunham M.T., Iverson B., 2014. High-efficiency thermodynamic power cycles for concentrated solar power systems. All Faculty Publications, Paper 1585. Available at: http://scholarsarchive.byu.edu/facpub.
- 8. In Seop Kim, Tong Seop Kim, Jong Jun Lee, 2017. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant. Energy Convers. Manage., 33, 284–291. DOI: 10.1016/j.enconman.2016.12.016.
- 9. Landelle A., Tauveron N., Revellin R., Haberschill P., Colasson S., 2017. Experimental investigation of a transcritical organic Rankine cycle with scroll expander for low – temperature waste heat recovery. Energy Procedia, 129, 810–817. DOI: 10.1016/j.egypro.2017.09.142.
- 10. Lemmon E.W., Huber M.L., McLinden M.O., 2013. Refprop, NIST Standard Reference Database 23, Ver. 9.1, USA.
- 11. Li Ch., Zhu Q., Wang H., 2015. Parametric optimization of Brayton/organic trans-critical combined cycle for flue gas waste heat recovery. Energy Procedia, 75, 1590–1595. DOI: 10.1016/j.egypro.2015.07.370.
- 12. Li Y.-R., Wang, X-Q., Li C-C., Wu S.-Y., Liu, C., 2015. Performance analysis of a coupled transcritical and subcritical organic Rankine cycle. J. Eng. Thermophys., 36 (6), 1176–1181.
- 13. Ling Bing K., Li T., Hng H.H., Boey, F., Zhang, T., Li S., 2014.Waste Energy Harvesting. Mechanical and Thermal Energies, Springer.
- 14. Mikielewicz D., Mikielewicz J., 2013. Criteria for selection of working fluid in low-temperature ORC. Chem. Process Eng., 37, 429–440. DOI: 10.1515/cpe-2016-0035.
- 15. Saidur R., Rezaei M., Muzammil W.K., Hassan M.H., Paria S., Hasanuzzaman M., 2012. Technologies to recover exhaust heat from internal combustion engines. Renew Sustainable Energy Rev., 16, 5649–5659. DOI: 10.1016/ j.rser.2012.05.018.
- 16. Sim K., Kim D.-J., 2017. Development and performance measurements of a beta-type free-piston Stirling engine along with dynamic model predictions. J. Eng. Gas Turbines Power, 139, GTP-17-1122. DOI: 10.1115/1.4036967.
- 17. Sornek K., Filipowicz M., 2016. A study of the applicability of a straw-fired batch boiler as a heat source for a small-scale cogeneration unit. Chem. Process Eng, 37, 503–515. DOI: 10.1515/cpe-2016-0041.
- 18. Wang Y., Zhao J., Chen G., Deng Sh., An Q., Luo Ch., Alvi J., 2018. A new understanding on thermal efficiency of organic Rankine cycle: Cycle separation based on working fluids properties. Energy Convers. Manage., 157, 169–175. DOI: 10.1016/j.enconman.2017.11.079.
- 19. Yoonhan Ahn, Seong Jun Bae, Minseok Kim, Seong Kuk Cho, Seungjoon Baik, Jeong Ik Lee, Jae Eun Cha, 2015. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol., 47, 647–661. DOI: 10.1016/j.net.2015.06.009.
- 20. Zhai H., An Q., Shi L., Lemort V., Quoilin S., 2016. Categorization and analysis of heat sources for organic Rankine cycle systems. Renewable Sustainable Energy Rev., 64, 790–805. DOI: 10.1016/j.rser.2016.06.076.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-653dcdd5-e751-44a5-b8bc-c221f7e73c80