PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic Fault Classification for Journal Bearings Using ANN and DNN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Journal bearings are the most common type of bearings in which a shaft freely rotates in a metallic sleeve. They find a lot of applications in industry, especially where extremely high loads are involved. Proper analysis of the various bearing faults and predicting the modes of failure beforehand are Essentials to increase the working life of the bearing. In the current study, the vibration data of a journal Bering in the healthy condition and in five different fault conditions are collected. A feature extraction metod is employed to classify the different fault conditions. Automatic fault classification is performed using artificial neural networks (ANN). As the probability of a correct prediction goes down for a higher number of faults in ANN, the method is made more robust by incorporating deep neural networks (DNN) with the help of autoencoders. Training was done using the scaled conjugate gradient algorithm and the performance was calculated by the cross entropy method. Due to the increased number of hidden layers in DNN, it is possible to achieve a high efficiency of 100% with the feature extraction method.
Rocznik
Strony
727--738
Opis fizyczny
Bibliogr. 22 poz., fot., rys., wykr.
Twórcy
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
  • School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
  • Department of Materials Engineering, University of Concepcion, Chile
Bibliografia
  • 1. Ali J. B., Fnaiech N., Saidi L., Chebel-Morello B., Fnaiech F. (2015), Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals, Applied Acoustics, 89, 16-27.
  • 2. Chen Z., Deng S., Chen X., Li C., Sanchez R. V., Qin H. (2017), Deep Neural Networks based rolling bearing fault diagnosis, Microelectronics Reliability, 75, 327-333.
  • 3. Gan M., Wang C., Zhu C. (2016), Construction of hierarchical diagnosis network based on deep learning and its applications in the fault pattern recognition of rolling element bearings, Mechanical Systems and Signal Processing, 72-73, 92-104, doi: 10.1016/j.ymssp.2015.11.014.
  • 4. Hajar M., Raad A., Khalil M. (2013), Bearing and gear fault detection using artificial neural networks, Proceedings of 7th International Conference on Surveillance 7, Institute of Technology of Chartres, France, October 29-30.
  • 5. Hase A., Mishina H., Wada M. (2016), Fundamental study on early detection of seizure in journal bearing by using acoustic emission technique,Wear, 346, 132-139.
  • 6. Huang N. E. et al. (1998), The empirical mode decomposition and the Hilbert Spectrum for non-linear and non-stationary time series analysis, Proceedings of the Royal Society of Mathematical, Physical and Engineering Sciences, 454, 1971, 903-995.
  • 7. Jeon B., Jung J., Youn B., Kim Y. M., Bae Y. C. (2015), Datum unit optimization for robustness of a journal bearing diagnosis system, International Journal of Precision Engineering and Manufacturing, 16, 11, 2411-2425.
  • 8. Jia F., Lei Y., Lin J., Zhou X., Lu N. (2016), Deep neural networks: a promising tool for fault characteristic mining intelligent diagnosis of rotating machinery with massive data, Mechanical Systems and Signal Processing, 72-73, 303-315, doi: 10.1016/j.ymssp.2015.10.025.
  • 9. Jia-li T., Yi-jun L., Fang-Sheng W. (2010), Levenberg-Marquardt neural network for gear fault diagnosis, 2nd International Conference on Networking and Digital Society (ICNDS), Wenzhou, China, 30-31 May, Vol. 1, pp. 134-137, doi: 10.1109/ICNDS.2010.5479613.
  • 10. Junsheng C., Dejie Y., Yu Y. (2006), Research on the intrinsic mode function (IMF) criterion in EMD method, Mechanical Systems and Signal Processing, 20, 4, 817-824.
  • 11. Kim T. W., Valdés J. B. (2003), Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, Journal of Hydrologic Engineering, 8, 6, 319-328.
  • 12. Kumar S. S., Kumar M. S. (2015), Application of artificial neural networks in the investigation of bering defects, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9, 8, 1113-1116.
  • 13. Liu T. I., Iyer N. R. (1993), Diagnosis of roller bering defects using neural networks, International Journal of Advanced Manufacturing Technology, 8, 4, 210-215.
  • 14. Narendiranath Babu T., Himamshu H. S., Prabin Kumar N., Rama Prabha D., Nishant C. (2017), Journal bearing fault detection based on Daubechies wavelet, Archives of Acoustics 42, 3, 401-414.
  • 15. Narendiranath Babu T., Manvel Raj T., Lakshmanan T. (2015), A review on application of dynamic parameters of journal bearing for vibration and condition monitoring, Journal of Mechanics, 31, 4, 391-416.
  • 16. Pennacchi P., Vania A., Chatterton S. (2012), Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings, Mechanical Systems and Signal Processing, 30, 306-322.
  • 17. Qiu H., Lee J., Lin J., Yu G. (2006), Wavelet filter based weak signature detection method and its application on rolling element bearing prognostics, Journal of Sound and Vibration, 289, 4-5, 1066-1090.
  • 18. Sadegh H., Mehdi A. N., Mehdi A. (2016), Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network, Tribology International, 95, 426-434.
  • 19. Samanta B., Al-Balushi K. R., Al-Araimi S. A. (2003), Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection, Engineering Applications of Artificial Intelligence, 16, 7-8, 657-665.
  • 20. Saridakis K. M., Nikolakopoulos P. G., Papadopoulos C. A., Dentsoras A. J. (2008), Fault diagnosis of journal bearings based on artificial neural networks and measurements of bearing performance characteristics, Proceedings of the Ninth International Conference on Computational Structures Technology, B. H. V. Topping, M. Papadrakakis [Eds.], Civil-Comp Press, Athens, Greece.
  • 21. Vyas N. S., Satishkumar D. (2001), Artificial neural network design for fault identification in a rotor Bering system, Mechanism and Machine Theory, 36, 2, 157-175.
  • 22. Yu D., Cheng J., Yang Y. (2005), Application of EMD method and Hilbert Spectrum to the fault diagnosis of roller bearings, Mechanical Systems and Signal Processing, 19, 2, 259-270.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6539e4fc-ea42-474c-96a3-b98712a0bd40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.