PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Stab Protection Properties of Aramid Fibre-Reinforced 3D Printed Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie właściwości ochrony przed przekłuciem elementów drukowanych 3D wzmocnionych włóknem aramidowym
Języki publikacji
EN
Abstrakty
EN
A stab resistant vest is a reinforced piece of body armour designed to resist knife or needle attacks of different energy levels specifically to the upper part of the body (chest and abdomen) to save lives. The majority of armours limit several comfort parameters, such as free locomotion, respiration, flexibility and light weight, which determine efficient use by wearers and their willingness to wear. Currently available armours are usually made of a single plate, and although often segmentation is used with just a few but still quite large pieces, the materials are compact and bulky to wear. In this study, stab protective armor elements (scale-like elements) of 3 mm thickness and 50 mm diameter were designed, produced (3D printed) and tested for performance. Aramid fibre was used for its strength, durability and process ability to develop protection elements at unidirectional and multidirectional filling angles during 3D printing. The specimens were tested according to VPAM KDIW 2004. The specimens designed and developed with multidirectional filling angles of aramid resist the puncturing energy level K1 (25 J) with a penetration depth less than the maximum allowed for the K1 energy level by VPAM. These specimens showed a high protection level of relative small thickness (3 mm) and light weight (6.57 grams for the estimated area A ≈ 1963.5 mm2) as compared to the currently certified armors for K1 (for example, the aluminum mass is 13.33 grams for 2 mm thickness and 50 mm diameter).
PL
Kamizelka odporna na dźgnięcie to wzmocniony element kamizelki kuloodpornej zaprojektowany tak, aby był odporny na ataki nożem lub igłą, w szczególności w górnej części ciała (klatce piersiowej i brzuchu), tak aby ratować życie. Kamizelka taka powinna spełniać kilka parametrów komfortu, takich jak: swoboda poruszania się, oddychanie, elastyczność i niewielka waga, które decydują o efektywnym użytkowaniu przez użytkowników i ich chęci do noszenia. Obecnie dostępne kamizelki są zwykle wykonane z jednej płyty i chociaż często stosuje się segmentację z zaledwie kilkoma, ale wciąż dość dużymi elementami, materiały są zwarte i nieporęczne w noszeniu. W pracy zaprojektowano, wyprodukowano (wydrukowano w 3D) i przetestowano pod kątem wydajności elementy pancerza ochronnego (elementy przypominające łuski) o grubości 3 mm i średnicy 50 mm. Zastosowano włókno aramidowe ze względu na jego wytrzymałość, trwałość i zdolność do wytwarzania elementów zabezpieczających przy jednokierunkowych i wielokierunkowych kątach wypełnienia podczas druku 3D. Próbki badano zgodnie z VPAM KDIW 2004. Stwierdzono, że zaprojektowane i opracowane próbki były odporne na poziom energii przebicia K1 (25 J) przy głębokości penetracji mniejszej, niż maksymalna dopuszczalna dla poziomu energii K1 przez VPAM. Próbki te wykazały wysoki poziom ochrony przy stosunkowo małej grubości (3 mm) i niewielkiej wadze (6.57 g dla szacowanego obszaru A ≈ 1963.5 mm2) w porównaniu z obecnie certyfikowanymi pancerzami dla K1 (np.: masa aluminium wynosi 13,33 g dla grubości 2 mm i średnicy 50 mm).
Rocznik
Strony
67--73
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar, 6000, Ethiopia
  • TU Dresden, Institute of Textile Machinery and High Performance Material Technology, Chair of Development and Assembling of Textile Products, 01062, Dresden, Germany
  • TU Dresden, Institute of Textile Machinery and High Performance Material Technology, Chair of Development and Assembling of Textile Products, 01062, Dresden, Germany
  • Bahir Dar University, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar, 6000, Ethiopia
Bibliografia
  • 1. Reiners P. Investigation about the Stab Resistance of Textile Structures, Methods for their Testing and Improvements. HAL: Université de Haute Alsace; 2016.
  • 2. Fenne P. Protection against Knives and other Weapons. Scott RA, editor. Cambridge: Woodhead Publishing, CRC; 2005.
  • 3. Alil L-C, Barbu C, Badea S, Ilie F. Aspects Regarding the Use of Polyethylene Fibers for Personal Armor. Eastern Michigan University, 2004.
  • 4. Cavallaro PV. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and Ballistic Impact Dynamics. In: Division NUWC, editor.: NUWCD-NPT-TR.; 2011.
  • 5. Laible R. Ballistic Materials and Penetration Mechanics (Methods and Phenomena, their applications in Science and Technology): Elsevier; 2012.
  • 6. National Institute of Justice OoJP, U.S. Department of Justice. Stab Resistance of Personal Body Armor NIJ Standard–0115.00. Washington: US National Institute of Justice; 2000.
  • 7. LaTourrette T. The Life-Saving Effectiveness of Body Armor for Police Officers. Journal of Occupational and Environmental Hygiene 2010; 7(10): 557-62. Epub 2010/07/17.
  • 8. Peleg K, Rivkind A, Aharonson-Daniel L. Does Body Armor Protect from Firearm Injuries? Journal of the American College of Surgeons 2006; 202(4): 643-8. Epub 2006/03/31.
  • 9. Jaslow CR. Mechanical Properties Pf Cranal Sutures. Journal of Biomechanical 1990; 23(4): 313-21.
  • 10. Larsen B, Netto K, Skovli D, Vincs K, Vu S, Aisbett B. Body Armor, Performance, and Physiology During Repeated High-Intensity Work Tasks. Military Medicine 2012; 177(11): 1308-15. Epub 2012/12/04.
  • 11. Greaves I. Military Medicine in Iraq and Afghanistan: A Comprehensive Review: Taylor & Francis Group, CRC Press; 2018.
  • 12. Ricciardi R, Deuster PA, Talbot LA. Metabolic Demands of Body Armor on Physical Performance in Simulated Conditions. Military Medicine 2008; 173(9): 817.
  • 13. Park H, Branson D, Petrova A, Peksoz S, Jacobson B, Warren A, et al. Impact of Ballistic Body Armour and Load Carriage on Walking Patterns and Perceived Comfort. Ergonomics 2013; 56(7): 1167-79. Epub 2013/05/10.
  • 14. Chinevere TD, Cadarette BS, Goodman DA, Ely BR, Cheuvront SN, Sawka MN. Efficacy of Body Ventilation System for Reducing Strain in Warm and Hot Climates. European Journal of Applied Physiology 2008; 103(3): 307-14. Epub 2008/03/11.
  • 15. Nayak R, Crouch I, Kanesalingam S, Ding J, Tan P, Lee B, et al. Body Armor for Stab and Spike Protection, Part 1: Scientific Literature Review. Textile Research Journal 2017; 88(7): 812-32.
  • 16. Nayak R, Kanesalingam S, Wang L, Padhye R. Stab Resistance and Thermophysiological Comfort Properties of Boron Carbide Coated Aramid and Ballistic Nylon Fabrics. The Journal of The Textile Institute 2018; 110(8): 1159-68.
  • 17. Matusiak M. Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials. FIBRES & TEXTILES in Eastern Europe 2010; 18, 2(79): 45-50.
  • 18. Djongyang N, Tchinda R, Njomo D. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews 2010; 14(9): 2626-40.
  • 19. Nayak R, Punj S, Chatterjee K, Behera BK. Comfort Properties of Suiting Fabrics. Indian Journal of Fibre and Textile 2009; 34: 122-8.
  • 20. Philippe F, Schacher L, Adolphe DC, Dacremont C. Tactile Feeling: Sensory Analysis Applied to Textile Goods. Textile Research Journal 2004; 74(12): 1066-72.
  • 21. Dempsey PC, Handcock PJ, Rehrer NJ. Impact of Police Body Armour and Equipment on Mobility. Appl Ergon. 2013; 44(6): 957-61. Epub 2013/05/15.
  • 22. Legg SJ. Influence of Body Armour on Pulmonary Function. Ergonomics 1988; 31(3): 349-53. Epub 1988/03/01.
  • 23. Li Y, Ortiz C, Boyce MC. Bioinspired, Mechanical, Deterministic Fractal Model for Hierarchical Suture Joints. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics 2012; 85 (3 Pt 1): 031901. Epub 2012/05/17.
  • 24. Pritchard J, Scott J, Girgis G. The Structure and Development of Cranial and Facial Sutures. Journal of Anatomy 1956; 90(1): 73-86.
  • 25. Herring SW. Mechanical Influences on Suture Development and Patency. Frontiers of Oral Biology 2008; 12: 41-56. Epub 2008/04/09.
  • 26. Dunlop JWC, Weinkamer R, Fratzl P. Artful Interfaces within Biological Materials. Materials Today 2011; 14(3): 70-8.
  • 27. Vernerey FJ, Barthelat F. On the Mechanics of Fishscale Structures. International Journal of Solids and Structures 2010; 47(17): 2268-75.
  • 28. Dastjerdi AK, Barthelat F. Teleost Fish Scales Amongst the Toughest Collagenous Materials. J Mech Behav Biomed Mater. 2015; 52: 95-107. Epub 2014/12/03.
  • 29. Zhu D, Szewciw L, Vernerey F, Barthelat F. Puncture Resistance of The Scaled Skin from Striped Bass: Collective Mechanisms and Inspiration for New Flexible Armor Designs. J Mech Behav Biomed Mater 2013; 24: 30-40. Epub 2013/05/21.
  • 30. Lin YS, Wei CT, Olevsky EA, Meyers MA. Mechanical Properties and the Laminate Structure of Arapaima Gigas Scales. J Mech Behav Biomed Mater. 2011; 4(7): 1145-56. Epub 2011/07/26.
  • 31. Connors MJ, Ehrlich H, Hog M, Godeffroy C, Araya S, Kallai I, et al. Three-Dimensional Structure of the Shell Plate Assembly of the Chiton Tonicella Marmorea and Its Biomechanical Consequences. Journal of Structural Biology 2012; 177(2): 314-28. Epub 2012/01/18.
  • 32. Ji B, Gao H. Mechanical Properties of Nanostructure of Biological Materials. Journal of the Mechanics and Physics of Solids 2004; 52(9).
  • 33. Barthelat F, Tang H, Zavattieri D, Li C, Espinosa D. On the Mechanics of Mother-of-Pearl: A Key Feature In The Material Hierarchical Structure. Journal of the Mechanics and Physics of Solids. 2007; 55(2): 306-37.
  • 34. Krauss S, Monsonego-Ornan E, Zelzer E, Fratzl P, Shahar R. Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle. Advanced Materials 2009; 21(4): 407-12.
  • 35. Garcia AP, Pugno N, Buehler MJ. Superductile, Wavy Silica Nanostructures Inspired by Diatom Algae. Advanced Engineering Materials 2011; 13(10): B405-B14.
  • 36. Martini R, Balit Y, Barthelat F. A Comparative Study of Bio-Inspired Protective Scales Using 3D Printing and Mechanical Testing. Acta Biomaterialia 2017; 55: 360-72. Epub 2017/03/23.
  • 37. Ahrendt D, Krzywinski S, Massot EJi, Krzywinski J. Hybrid Material Designs by the Example of Additive Manufacturing for Novel Customized Stab Protective Clothing. Light Weight Armour Group for Defense and Security; Roubaix, France2019. p. 286-94.
  • 38. Markforged. Markforged the Mark Two Desktop 3D Printer. Germany: Markforged, Inc; 2019 [cited 2020 05 April]; Available from: https://markforged.com/mark-two/.
  • 39. Langau L. What is Continuous Fiber Fabrication (CFF)? Make Parts Fast, A Design World Resource2017.
  • 40. Dean A. A Review on Markforged Mark Two: the basics of how it works. DEVELOP3D. 2016.
  • 41. 3D Printer Types & Technologies [database on the Internet]. Markforged. 2019. Available from: https://markforged.com/learn/3d-printer-types-technologies/.
  • 42. Office of the Deutsche Hochschule der Polizei Polizeitechnisches Institut. Test Standard Stab and Impact Resistance. Requirements, classifications and test procedures. Deutchland: Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen (VPAM); 2011.
  • 43. Connor SEJ, Bleetman A, Duddy MJ. Safety Standards for Stab-Resistant Body Armour: A Computer Tomographic Assessment of Organ to Skin Distances. International Journal of the Care of the Injured 1998; 29(4): 297-9.
  • 44. Su S, Wang W, Nadebaum D, Nicoll A, Sood S, Gorelik A, et al. Skin-Liver Distance and Interquartile Range-Median Ratio as Determinants of Interoperator Concordance in Acoustic Radiation Force Impulse Imaging. Journal of Medical Ultrasound 2019; 27(4): 4.
  • 45. Shen F, Zheng R-D, Shi J-P, Mi Y-Q, Chen G-F, Hu X, et al. Impact of Skin Capsular Distance on the Performance of Controlled Attenuation Parameter in Patients with Chronic Liver Disease. Liver International 2015; 2015: 9. John Wiley & Sons Ltd.
  • 46. Aalco. Weight calculator. England & Wales: Aalco metals limited; 2020; Available from: http://www.aalco.co.uk/online-tools/weight-calculator/.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65378316-15a7-4de6-a412-c4655f4348a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.