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Abstract 

 
In this paper, mixture of two normal distributions is proposed to accommodate the values of  rail vehicles 

parameters. We also present the most commonly used maximum likelihood estimation to fit the two component mixture 
of normal distribution using data sets  of  rail vehicles. 
 
Keywords: rail vehicles, speed of train, mass of train, mixture of distributions, maximum likelihood method, normal 
distribution, EM algorithm 
 
1. Introduction 
 

Monitoring the values of parameters of rail vehicles is a very important factor of safety in rail 
transportation. In this paper, we analyze some parameters of rail vehicles. Values of these 
parameters are collected by DSAT system. This system screens the values of parameters of  rail 
vehicles with various types of construction of bearing axles and train brake. It is applicable to 
various diameters of the wheels. System DSAT is installed on a straight rail line. System DSAT 
finds the following symptoms: 

(a) improvement of temperature of a bearing axle – function GM, 
(b) non working brakes – function GH, 
(c) exceeded pressure on axle ( NO) or exceeded linear pressure ( NL) – function OK, 
(d) deformation of surface wheels – function PM ( PO), 

The system DSAT registers the following values of parameters: 
(e) speed [km/h], 
(f) number of axles, 
(g) length of train [m], 
(h) number of railway carriage, 
(i) mass of train [t]. 

The values of these parameters are the heterogeneous sets. It is a result of the fact that the rail 
vehicles moving on the analyzed path execute different tasks, such as transportation of people and 
cargo. 
In this paper, we use the mixture model for investigating a complex distribution of parameters of 
the rail vehicles. The mixture model has a wide variety of applications in technical and life 
science. Because of their usefulness as extremely flexible method of modeling, finite mixture 
models have continued to receive increasing attention over the recent years, from both practical 



and theoretical points of view, and especially for lifetime distributions. The problem application of 
the mixture of distributions to lifetime analysis is considered in [4, 5, 6, 7]. Fitting the mixture 
distributions can be handled by variety of techniques, this includes graphical methods, the methods 
of moments, maximum likelihood and Bayesian approaches ( see Titterington et al. [14], 
McLachan G.J. and Basford K.E [9], Lindsay [8], McLachlan and Peel [10], Furhwirth- Schnatter 
[3]). Now extensive advances have been introduced in the fitting of the mixture models especially 
via maximum likelihood method. Among all, the maximum likelihood method becomes the first 
preference due to the existence of an associated statistical theory. The maximum likelihood 
method is making by expectation maximization algorithm ( EM algorithm ). The key property of 
the EM algorithm has been established by Dempster et al. [1] and McLachan G.J. and Krishan 
[11]. The EM algorithm is a popular tool for solving maximum likelihood problems in the context 
of a mixture model. We will focus on maximum likelihood techniques in this paper since the 
estimates tend to converge to true parameters values under general conditions. Maximum 
likelihood estimation procedures seek to find the parameters values that maximize the likelihood 
function evaluated at the observations. 
 
2. Analysis of measurements 
  

The research object is a real transportation rail system. In this rail system, the gauge registers 
four parameters for n = 360 of trains for 6 days. 
It is known that the measurement parameters are dependent. For this purpose, we calculate the 
matrix of correlation of a random variables (X1, X2, X3, X4

 ), where X1 is speed, X2 is number of 
axles, X3 is the length of train, X4 is the mass of train. The correlation matrix K of the random 
variable X = (X1, X2, X3, X4

 ) is given as  
 

                               K = 

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All correlation coefficients are statistical significant under p – value, p < 0.0001. In Fig. 1, we 
illustrate the relation between the mass and the length of the train, however Fig. 2 illustrates the 
relation between the mass and the speed. 
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Fig. 1. Relation of mass versus length 
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Fig. 2. Relation of mass versus speed 
 
3. Model of distribution of parameters 

 
The fact that the analyzed sets are heterogeneous caused that in order to analyze of the 

probability distribution of parameters of the rail vehicles is not applicable to the various 
distributions such  Weibull and gamma. In this paper, we analyze two-component mixture 
distribution of distributions as the distribution of examined parameters. Let X and Y be the 
independent random variables with the density functions f1(x) and f2(x), the cumulative 
distribution functions F1(x) and F2(x), the reliability functions R1(x) and R2(x), the failure rate 
function (hazard function) λ1(t) and λ2(t). Distribution function of the mixture X and Y is described 
by the following formula: 
 

F(x) = p F1(x) + (1– p) F2(x), 
 
where p is the mixing parameter and 0 ≤ p ≤ 1. 
Analogously for the density function f(x) and the reliability function R(x), we can write as 
 

f(x) = p f1(x) + (1 – p) f2(x), 
 

R(x) = p R1(x) + (1– p) R2(x). 
 
The mean value of the random variable X is 
 

EX = p m1 + (1– p) m2, 
 
however the variance of X is  
 

D2X = p σ1
2 + (1 – p) σ2

2. 
 
The failure rate function of the mixture can be written as the mixture [4]: 
 

λ(t) = ω (t) λ1(t) + (1 – ω(t)) λ2(t), 



 
where λ(t) = f(t) / R(t), ω (t) = pR1(t) / R(t), λ1(t) and λ2(t) are the failure rate functions of the 
lifetimes X and Y. Understanding the shape of the failure rate function is important in reliability 
theory and practice.  
Teicher [12, 13] introduced the concept of identifiability and developed a theory of identify 
mixtures. The concept of identifiability plays a vital role in the analysis of the finite mixture 
model. A mixture is identifiable if there exists a one to one correspondence between the mixing 
distributions and resulting mixture. The inference procedures on the mixture distributions can be 
meaningfully discussed only if the family of mixture distributions is identifiable. 
The basic problem is to infer about unknown parameters, on the basis of a random sample of size   
n on the observable random variable X. The first opinion of the data from the DSAT system shows 
that the mixture of two normal distributions is a proper model for analyzed parameters. The 
density function of the mixture of two normal distributions can be written in the following form  
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We will estimate five parameters  m1, m2, σ1, σ2, p of the density (1). To estimate parameters        
Θ = (m1, m2, σ1

2, σ2
2, p) we will use the likelihood method. The likelihood function for the mixture 

(1) is  
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The logarithm of the likelihood function is 
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We compute the first partial derivative: 
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where A = f(xi; m1, m2, σ1
2, σ2

2, p). 
To find the maximum log-likelihood function, we set the first partial derivative equal to zero.        
In finite mixture model, the EM algorithm has been used as an effective methods to find maximum 
likelihood parameters estimation.  
 



 
4. Real data set 
  

In this chapter of paper, we will estimate  the parameters m1, m2, σ1
2, σ2

2, p of the mixture two 
normal distributions for the random variable X1–  speed of train, X2 – number of axles, X3 – length 
of train, and X4

 – mass of train. By λ-KS we describe the value of the goodness of fit statistics      
λ- Kolmogorov.- Smirnov We used o procedure EM algorithm given for special case of normal 
mixtures by Hastie et al. [2]. The estimated parameters, K-S test statistics and p – values for four 
random variables are given in Table 1. All considered the parameters of rail vehicles shown good 
conformity the empirical distributions and the mixture distributions.  
 

Tab.1. Values of parameters of mixtures 
 

Random 
  variable 

Parameters of mixture goodness of   
fit statistic      
λ – KS 

 
p– value
       m1       m2        1      2        p 

X1– speed    51.270    78.115    7.8284    2.6947     0.5315      0.3780 0.99 

X2 – axles    37.609    151.49    12.570    43.104     0.5310      0.6102 0.85 

X3–length   191.92    599.77    72.529    109.84     0.5476      0.9153 0.56 
X4–  mass   381.66    2051.8    39.215    788.59     0.7381      0.8543 0.53 

 
The graphs of the components ( ft and ft-1) of the mixture and the density function (ft-2) of 
mixture are shown in Figure 3. 
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Fig. 3. The factors of mixture and the density function of mixture 
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Fig. 4. The distribution function of speed (Fe) and the mixture (Ft) 
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Fig. 5. The distribution function of number of axles (Fe) and the mixture (Ft) 
 
The graphs the distribution function of the speed and distribution function of mixture are shown in 
Figure 4. We conclude that the mixture two-normal distributions is consistent model with the 
empirical distribution of the speed. The graphs of empirical distribution of the number of axles and 
the distribution function of mixture two-normal distributions are shown in Figure 5. In this case, 
we observe that both distribution are consistent too. The distribution functions for the length and 
the mass is given in Figure 6 and Figure 7.   
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Fig. 6. The distribution function of the length (Fe) and the mixture (Ft) 
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Fig. 7. The distribution function of the mass (Fe) and the mixture (Ft) 
 
5. Conclusions  
 

We use the mixture of two-normal distribution model for investigating complex distributions of 
the rail vehicles. It is shown that the mixture of two normal distributions is useful for exploring the 
complex distributions. Lastly, we fit the two component mixture normal distribution to data set 
using EM algorithm to maximize the likelihood function. 
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