PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study of Inclusions in Aluminum and Titanium Deoxidized 4130

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors investigated the size distribution of titanium oxide (TiO2), titanium nitride (TiN) and titanium carbide (TiC) inclusions in a titanium deoxidized 4130 steel and compared it with the 4130 base alloy composition inclusions. TiN and TiC inclusions are of particular interest due to their role as heterogeneous nuclei for various phase reactions in steels. Two types of samples were prepared, a polished sample and a filtered sample. Electrolytic dissolution was employed to make the filter paper samples. The size range of titanium inclusions was found to be more than that of the non-metallic inclusions from 4130 base alloy heat. Titanium inclusions from the filter and polished samples were round in shape. TiC and TiN inclusions were not found in the electrolytic extraction samples. Inclusions and their chemistries were analyzed using scanning electron microscope and energy dispersive spectrometer. The inclusion size range was larger for the titanium deoxidized samples than the base alloy. However, in both steels the majority of inclusions had a size smaller than 10 μm.
Rocznik
Strony
129--134
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Saginaw Valley State University, Michigan, United States
autor
  • Saginaw Valley State Universit, Michigan, United States
Bibliografia
  • [1] Tuttle, R.B. (2012). Foundry Engineering: The Metallurgy and Design of Castings. Charleston, SC. Createspace Independent Publishing.
  • [2] Bramfitt, B. (1979). The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metallurgical Transactions. 1, 1987-1995.
  • [3] Farrar, R.A. & Harrison, P.L. (1987). Acicular ferrite in carbon-manganese weld metals: an overview. Journal of Materials Science. 22, 3812-3820.
  • [4] Barbaro, F.J., Krauklis, P. & Easterling, K.E. (1989). The formation of aciculart ferrite at oxide particles in steels. Materials Science and Technology. 5(11), 1057-1068.
  • [5] Kanazawa, S., Nakashima, A., Okamoto, K. & Kanaya, K. (1976). Improvement of weld fusion zone toughness by find TiN. Transactions of the Iron and. Steel Institute of Japan. 16(9), 486-495.
  • [6] Bhatti, A.R., Saggese, M.E., Hawkins, D.N., Whiteman, J.A., & Goding, M.S. (1984). Analysis of inclusions in submerged arc welds in microalloyed steels. Welding Journal. 63, 224-230.
  • [7] Abson, D.J., Dolby, R.E., & Hart, P.H.M. (1978). The role of non-metallic inclusions in ferrite nucleation in carbon steel weld metals. Trends in Steels and Consumable for Welding. 75-101.
  • [8] Homma, H. Ohkita, S., Matsuda, S. & Yamamoto, K. (1987). Improvement of haz toughness in hsla steel by introducing finely dispersed ti-oxide. Welding Journal. 66, 301-309.
  • [9] Lee, J.L. & Pan, Y.T. (1991). Development of tiox- bearing steels with superior batch effected zone toughness. Met. Trans. A. 22A, 2818-2822.
  • [10] Goto, H., Miyazawa, K., Yamada, K. & Tanaka, K. (1995). Effect of cooling rate on composition of oxides precipitated druing solidification of steels. ISIJ International. 35(6), 708-714.
  • [11] Goto, H., Miyazawa, K., Yamagishi, K., Ogibayahsi, S. & Tanaka, K. (1994). Effect of cooling rate on oxide precipitation during solidification of low-carbon steels. ISIJ International.. 34(5), 414-419.
  • [12] Wang, C., Gao, H. Dai, Y., Ruan, Z., Wang, J. & Sun, B. (2010). Grain refining of 409L ferritic stainless steel using Fe-Ti-N master alloy. Metallurgical and Materials Transactions A. 41, 1616-1620. DOI: 10.1007/s11661-010-0228-0.
  • [13] Park, J., Lee, C. & Park J. (2012). Effect of complex inclusion particles on the solidification structure of Fe-Ni-Mn-Mo alloy. Metallurgical and Materials Transactions B. 43(6), 1550-1564. DOI: 10.1007/S11663-012-9734-3.
  • [14] Simon, L., Jun, G., Richards, V., O’Malley, R. & Terbush, J. (2017). Optimization of melt treatment for austenitic steel grain refinement. Metallurgical and Materials Transactions B. 48(1), 406-419. DOI: 10.1007/S11663-016-0832-5
  • [15] Isobe, K. (2010). Effect of Mg addition on solidification structure of low carbon steel. ISIJ International. 50(12), 1972-1980. DOI: 10.2355/isijinternational.50.1972.
  • [16] Kivi, M. (2010). Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement. : Metallurgical And Materials Transactions B. 41(6), 1194-1204. DOI: 10.1007/s11663-010-9416-y.
  • [17] Kivi, M. & Holappa, L. (2012). Addition of titanium oxide inclusions into liquid steel to control nonmetallic inclusions. Metallurgical And Materials Transactions B. 43(2), 233-240. DOI: 10.1007/S11663-011-9603-5.
  • [18] Bommareddy, A. & Tuttle, R.B. (2016). Study of electrolytic dissolution in steels and rare earth oxide stability. International Journal of Metalcasting. 10(2), 201-207. DOI: 10.1007/s40962-016-0023-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65338f01-53a2-493c-a70f-c96c3d65ee31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.