PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of fly ashes from combustion of hard coal and co-combustion of alternative fuel (SRF) with coal in the stoker boiler WR-25 type studies have been shown. Samples of fly ashes were acquired during industrial combustion tests of hard coal and blend of coal with 10% SRF. The scope of comparative research included: chemical composition, contents of combustible parts and trace elements and also of microscopic analysis. The specific surface area SBET was established and tests of water extract were conducted. Chemical composition of mineral substance of both studied ashes is similar. Main ingredients are: SiO2, Al2O3, Fe2O3 and CaO. Fly ash from co-combustion of SRF with coal in a stoker boiler is characterized by high contents of combustible parts (on 30% level), higher than ash from hard coal combustion. Both tested ashes are characterized by specific surface area SBET on the level of 8–9 m2/g. In porous structure mesopores are dominant (>60%), and their volume is higher for fly ash from co-combustion of SRF with coal. Fly ash from co-combustion of waste is characterized by high contents of heavy metals. Nevertheless these metals and also other pollutants do not show leachability exceeding acceptable values for wastes different than hazardous. The microscopic structure of fly ashes from combustion of hard coal and co-combustion of alternative fuel studies showed crucial differences, especially in reference to organic material. Presented research results have shown that fly ash from co-combustion of SRF with coal in a stoker boiler can obtain the status of non-hazardous waste.
Rocznik
Strony
58--67
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
  • Institute for Chemical Processing of Coal, Poland
  • Institute for Chemical Processing of Coal, Poland
  • Institute for Chemical Processing of Coal, Poland
Bibliografia
  • 1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Progress in Energy and Combustion Science, 36(3), pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003.
  • 2. Attarde, S., Marathe, S. & Sil, A. (2014). Utilization of fly ash in construction industries for environment management, International Journal of Environmental, 3(2), pp. 117-121.
  • 3. Bastian, S. (1980). Betony konstrukcyjne z popiołem lotnym, Wydawnictwo Arkady, Warszawa. (in Polish)
  • 4. Basu, M., Pande, M., Bhadoria, P.B.S. & Mahapatra, S.C. (2009). Potential fly-ash utilization in agriculture: A global review, Progress in Natural Science, 19(10), pp. 1173-1186, DOI: 10.1016/j.pnsc.2008.12.006.
  • 5. Bielińska, E.J., Baran, S. & Stankowski, S. (2009). Ocena przydatności popiołów fluidalnych z węgla kamiennego do celów rolniczych, Inżynieria Rolnicza, 115(6), pp. 7-15. (in Polish)
  • 6. Del Zotto, L., Tallini, A., Di Simone, G., Molinari, G. & Cedola, L. (2015). Energy enhancement of solid recovered fuel within systems of conventional thermal power generation, Energy Procedia, 81, pp. 319-338, DOI:10.1016/j.egypro.2015.12.102.
  • 7. Diaz-Somoano, M., Unterberger, S. & Hein, K.G. (2006). Prediction of trace element volatility during co-combustion processes, Fuel, 85, pp. 1087-1093
  • 8. EN 15357:2011. (2011). Solid recovered fuels - Terminology, definitions and descriptions.
  • 9. EN 15359:2011. (2011). Solid recovered fuels - Specifications and classes.
  • 10. Fyffe, J.R., Breckel, A.C., Townsed, A.K. & Webber, M.E. (2016). Use of SRF residue as alternative fuel in cement production, Waste Management, 47(PB), pp. 276-284, DOI: 10.1016/j.wasman.2015.05.038.
  • 11. Girón, R.P., Ruiz, B., Fuente, E., Gil, R.R. & Suárez-Ruiz I. (2013). Properties of fly ash from forest biomass combustion, Fuel, 114, pp. 71-77, DOI: 10.1016/j.fuel.2012.04.042.
  • 12. Hequet, V., Ricou, P., Lecuyer I. & Le Cloirec, P. (2001). Removal of Cu2+ and Zn2+ in aqueous solutions by sorption onto mixed fly ash, Fuel, 80(6), pp. 851-856, DOI: 10.1016/S0016-2361(00)00153-8.
  • 13. Hower, J.C., Groppo, J.G., Graham, U.M., Ward, C.R., Kostova I.J., Maroto-Valer, M.M. & Dai, S. (2017). Coal-derived unburned carbons in fly ash: A review, International Journal of Coal Geology, 179, pp. 11-27, DOI: 10.1016/j.coal.2017.05.007.
  • 14. ISO 562:2010 - Hard coal and coke - Determination of volatile matter.
  • 15. ISO 1928:2009 - Solid mineral fuels - Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value.
  • 16. ISO 19579:2006 - Solid mineral fuels - Determination of sulfur by IR spectrometry.
  • 17. ISO 29541:2010 - Solid mineral fuels - Determination of total carbon, hydrogen and nitrogen content - Instrumental method.
  • 18. Jagustyn, B., Wasielewski, R. & Skawińska, A. (2014). Podstawy klasyfikacji odpadów biodegradowalnych jako biomasy, Ochrona Środowiska, 4, pp. 45-50. (in Polish)
  • 19. Jain, A. K., Gupta, V.K. & Bhatnagar, A. (2003). Utilization of industrial waste products as adsorbents for the removal of dyes, Journal of Hazardous Materials, 101, pp. 31-42, DOI: 10.1016/S0304-3894(03)00146-8.
  • 20. Janos, P., Buchtova, H. & Ryznarova, M. (2003). Sorption of dyes from aqueous solutions onto fly ash, Water Research, 37, pp. 4938-4944, DOI: 10.1016/j.watres.2003.08.011.
  • 21. Jarosiński, A. (2013). Mineral and Chemical Composition of Fly Ashes Deriving from Co-Combustion of Biomass with Coal and Its Application, Inżynieria Mineralna - Journal of the Polish Mineral Engineering Society, 14, pp.141-148.
  • 22. Journal of Laws of 2016 item 1277, enclosure 3. Regulation of the Minister of Economy of 16 July 2015 on regarding issuing permission to store waste on landfills. (in Polish)
  • 23. Mirowski, T., Mokrzycki, E. & Uliasz-Bocheńczyk, A. (2018). Energetyczne wykorzystanie biomasy, Wydawnictwo IGSMiE PAN, Kraków. (in Polish)
  • 24. Parzentny, H.R. & Róg, L. (2007). Potentially hazardous trace elements in ash from combustion of coals in limnic series (Upper Carboniferous) of the Upper Silesian Coal Basin (USCB), Górnictwo i Geologia, 2(3), pp. 81-91. (in Polish)
  • 25. Plewa, F., Popczyk, M. & Pierzyna P. (2013). Możliwości wykorzystania wybranych odpadów energetycznych z udziałem środka wiążącego do podsadzki zestalanej w podziemiu kopalń, Polityka energetyczna - Energy Policy Journal, 16(4), pp. 257-270. (in Polish)
  • 26. Polowczyk, I., Bastrzyk, A., Sawiński, W., Koźlecki, T., Rudnicki, P., Sadowski, Z. & Sokołowski, A. (2010). Właściwości sorpcyjne popiołów ze spalania węgla, Inżynieria i Aparatura Chemiczna, 49(1), pp. 93-94. (in Polish)
  • 27. PN-G-04534:1999 - Solid fuels. Determination of chlorine content. Polish Standard, 1999. (in Polish)
  • 28. PN-82/G-04543 - Hard coal and lignite. Determination of fluorine content. Polish Standard, 1982. (in Polish)
  • 29. PN-EN 15400:2011 - Solid recovered fuels - Determination of calorific value. Polish Standard, 2011.
  • 30. PN-EN 15402:2011 - Solid recovered fuels - Determination of the content of volatile matter. Polish Standard, 2011.
  • 31. PN-EN 15403:2011 - Solid recovered fuels - Determination of ash content. Polish Standard, 2011.
  • 32. PN-EN 15407:2011 - Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H), and nitrogen (N) content. Polish Standard, 2011.
  • 33. PN-EN 15408:2011 - Solid recovered fuels - Methods for the determination of sulphur (S), chlorine (Cl), fluorine (F) and bromine (Br) content. Polish Standard, 2011.
  • 34. PN-EN 15414-3:2011 - Solid recovered fuels - Determination of moisture content using the oven dry method - Part 3: Moisture in general analysis sample. Polish Standard, 2011.
  • 35. PN-EN ISO 17828:2016 - Solid biofuels - Determination of bulk density. Polish Standard, 2016.
  • 36. PN-ISO 589:2006 - Hard Coal. Determination of total moisture content. Polish Standard, 2006.
  • 37. PN-ISO 1171:2002 - Solid mineral fuels. Determination of ash content. Polish Standard, 2002.
  • 38. Q/LP/32/B:2016 - Solid fuels. Determination of mercury content. Technical Procedure IChPW, 2016. (in Polish)
  • 39. Q/LP/33/A:2011 - Solid combustion by-products. Determination of mercury content. Technical Procedure IChPW, 2011. (in Polish)
  • 40. Q/LP/37/A:2011 - Biomass. Determination of bulk density. Technical Procedure IChPW, 2011. (in Polish)
  • 41. Q/LP/40/A:2011 - Solid post-combustion waste products. Determination of combustible fraction using automatic analyzer. Technical Procedure IChPW, 2011. (in Polish)
  • 42. Q/LP/54/A:2016 - Wastes and solid recovered fuels. Determination of total mercury content. Technical Procedure IChPW, 2016. (in Polish)
  • 43. Q/LP/55/B:2016 - Solid fuels. Determination of the chemical composition of ash by the ICP-OES technique. Technical Procedure IChPW, 2016. (in Polish)
  • 44. Q/LP/57/B:2016 - Solid fuels. Determination of trace elements using ICP-OES. Technical Procedure IChPW, 2016. (in Polish)
  • 45. Q/LP/62/B:2016 - Solid post-combustion waste products. Determination of the chemical composition of ash using ICP-OES. Technical Procedure IChPW, 2016. (in Polish)
  • 46. Q/LP/63/A:2012 - Solid post-combustion waste products. Determination of trace elements using ICP-OES. Technical Procedure IChPW, 2012. (in Polish)
  • 47. Q/LP/65/B:2016 - Wastes and solid recovered fuels. Determination of chemical composition of ash using ICP-OES. Technical Procedure IChPW, 2016. (in Polish)
  • 48. Q/LP/66/A:2014 - Wastes and solid recovered wastes. Determination of trace elements using ICP-OES. Technical Procedure IChPW, 2014. (in Polish)
  • 49. Saraber, A. (2012). Co-combustion and its impact on fly ash quality; pilot-scale experiments, Fuel Processing Technology, 104, pp. 105-114, DOI: 10.1016/j.fuproc.2012.04.033.
  • 50. Sarbak, Z. & Kramer-Wachowiak, M. (2012) Wykorzystanie popiołów lotnych jako adsorbentów metali ciężkich, Przemysł Chemiczny, 91(2), pp. 189-192. (in Polish)
  • 51. Sobolewski, A., Wasielewski, R., Dreszer, K. & Stelmach, S. (2006). Technologie otrzymywania i kierunki zastosowań paliw alternatywnych otrzymywanych z odpadów, Przemysł Chemiczny, 8-9, pp.1080-1084. (in Polish)
  • 52. Stelmach, S. & Wasielewski R. (2008). Co-combustion of dried sewage sludge and coal in a pulverized coal boiler, Journal of Material Cycles and Waste Management, 10, pp. 110-115, DOI: 10.1007/s10163-007-0206-9.
  • 53. Szarek, Ł. & Wojtkowska, M. (2018). Properties of fly ash from thermal treatment of municipal sewage sludge in terms of EN 450-1, Archives of Environmental Protection, 44(1), pp. 63-69.
  • 54. Styszko, K. & Drobniak, A. (2015). Analiza możliwości adsorpcji wybranych ksenobiotyków z roztworów wodnych na popiele lotnym, Ochrona Środowiska, 37(1), pp. 25-31. (in Polish)
  • 55. Ściubidło, A. (2016). Synthesis of sorbents for exhaust gases purification n.d. Advanced CO2 Capture Technologies for Clean Coal Energy Generation. In: Majchrzak-Kucęba, I. & Wawrzyńczak, D. (Eds) Monographs No 320, Czestochowa University of Technology, Częstochowa pp. 63-5. (in Polish)
  • 56. Ściubidło, A. & Nowak W. (2012). Novel sorbents for flue gas purification, Journal of Power Technology, 92, pp. 115-126.
  • 57. Ściubidło, A. & Nowak, W. (2018). Co-combustion of solid recovered fuel (SRF) and coal and its impact on fly ash quality, Mineral Resources Management, 34(2), pp. 117-136, DOI: 10.24425/118651. (in Polish)
  • 58. Suarez-Ruiz, I. & Valentim, B. (2015) Atlas of Fly Ash Occurrences: Identification and Petrographic Classification of Fly Ash Components Working Group. Commission III-ICCP. ISBN:978-84-608-1416-0. 203 pp. Available at. http://www.iccop.org/documents/atlas-of-fly-ash-occurrences.pdf (accessed 13 March 2017).
  • 59. Thiel, S. & Thomé-Kozmiensky, K.J. (2012). Co-combustion of solid recovered fuels in coal-fi red power plants, Waste Management & Research, 30(4), pp. 392-403, DOI: 10.1177/0734242X11427946.
  • 60. Uliasz-Bocheńczyk, A., Mazurkiewicz, M. & Mokrzycki, E. (2015). Fly ash from energy production - a waste, by product and raw material, Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 31(4), pp.139-150, DOI: 10.1515/gospo-2015-0042. (in Polish)
  • 61. Uliasz-Bocheńczyk, A., Pawluk, A. & Sierka, J. (2015). Wymywalność zanieczyszczeń z popiołów lotnych ze spalania biomasy, Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 31(3), pp.145-156, DOI: 10.1515/gospo-2015-32. (in Polish)
  • 62. Wang, S., Yashveersingh, B., Choueib, A., Ng, E., Wu, H. & Zhu Z. (2005). Technical Note. Role of unburnt carbon in adsorption of dyes on fly ash, Journal of Chemical Technology and Biotechnology, 80, pp. 1204-1209, DOI: 10.1002/jctb.1299.
  • 63. Wang, S., Ma, Q. & Zhu, Z. (2008). Characteristic of coal fly ash and adsorption application, Fuel, 87 (15-16), pp. 3469-3473, DOI: 10.1016/j.fuel.2008.05.022.
  • 64. Wasielewski, R. & Bałazińska, M. (2018). Odzysk energii z odpadów w aspekcie kwalifikacji wytworzonej energii elektrycznej i ciepła jako pochodzących z odnawialnego źródła energii oraz uczestnictwa w systemie handlu uprawnieniami do emisji gazów cieplarnianych, Polityka Energetyczna - Energy Policy Journal, 21(1), pp. 129-142. (in Polish)
  • 65. Wasielewski, R., Głód, K. & Telenga-Kopyczyńska, J. (2018). Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler, E3S Web of Conferences, Air Protection in Theory and Practice, 28, 01037, DOI:10.1051/e3sconf/20182801037.
  • 66. Wasielewski, R. & Sobolewski, A. (2015). Uwarunkowania i perspektywy wykorzystania paliw z odpadów do generowania energii elektrycznej i ciepła, Przemysł Chemiczny, 4, pp.1000-1005, DOI:10.15199/62.2015.4.3. (in Polish)
  • 67. Wójcik, M., Stachowicz, F. & Masłoń, A. (2017). Możliwość wykorzystania popiołów lotnych w celu poprawy odwadniania osadów ściekowych, Journal of Civil Engineering, Environmental and Architecture, 34(64), pp. 377-393, DOI: 10.7862/rb.2017.35. (in Polish)
  • 68. Wu, H., Glarborg, P., Frandsen, F., Dam-Johansen, K., Jensen, P.A. & Sander, B. (2009). Co-combustion of coal and SRF in an entrained flow reactor: a preliminary study. In 4th European Combustion Meeting Technical University of Denmark, Department of Chemical Engineering.
  • 69. Wu, H., Glarborg, P., Jappe Frandsen, F., Dam-Johansen, K., Jensen, P.A. & Sander, B. (2013). Trace elements in co-combustion of solid recovered fuel and coal, Fuel Processing Technology, 105, pp. 212-221, DOI: 10.1016/j.fuproc.2011.05.007.
  • 70. Żygadło, M. (2018). Wybrane elementy problematyki współspalania paliw alternatywnych, Ochrona Środowiska, 40(2), pp. 39-44. (in Polish)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-653309f9-e5f8-42d6-a077-11e945b1707d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.