PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and implementing possibilities of composite pontoon bridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwości projektowe i wykonawcze kompozytowego mostu pontonowego
Języki publikacji
EN
Abstrakty
EN
This work focuses on the analysis of actions conducted by the Military Institute of Engineer Technology and Wroclaw University of Science and Technology regarding the production and testing (on proving ground) of composite pontoon bridge. The starting point for this work was the experience gained from the project named „Light, resistant to environmental hazards, aluminum-composite hybrid pontoon used in constructing floating bridges of MLC 70/110 class”. Each one of the three V-shaped outriggers was designed using different technology. The middle part was constructed mostly of aluminum by company PREMO, but the smaller outrigger and all parts of the bow were made at Wroclaw University of Science and Technology from composite material reinforced with glass, aramid and carbon fibers. The inside was filled with multiple types of foam. During successful tests on proving grounds, conducted by Military Institute of Engineer Technology, elements were connected with PP-64 pontoons. It was proven that Wroclaw scientific society is capable of designing and manufacturing of a prototype pontoon bridge park.
PL
W ramach projektu rozwojowego nr 03003906 zespoły Wojskowego Instytutu Techniki Inżynieryjnej i Politechniki Wrocławskiej zaprojektowały i wykonały pierwszy w świecie, całkowicie kompozytowy ponton przeznaczony do budowy mostów pływających. Kompletny prototypowy zespół pontonowy składa się z trzech członów zespolonych w układzie „V” – szerokiego członu centralnego i dwóch dwukrotnie węższych członów bocznych. Człony boczne do transportu składają się zawiasowo na wierzch członu centralnego. Każdy z trzech członów wykonano według różnej technologii. Jeden z nich – całkowicie kompozytowy – wykonano, wykorzystując włókna szklane, węglowe, aramidowe oraz wiele różnego typu pianek. Ponton jest lekki, niezatapialny, o podwyższonej odporności na uszkodzenia mechaniczne, w tym odłamki i przestrzelenie, a także na ogień. W ostatnim etapie prac ponton włączono w przeprawę i testowano przez najeżdżanie kolejno cięższymi pojazdami wojskowymi. Udowodniono słuszność koncepcji wykorzystania materiałów kompozytowych do budowy pontonów.
Rocznik
Strony
411--420
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, 25 M. Smoluchowskiego Ave., 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering
  • Military Institute of Engineer Technology, Wroclaw
autor
  • Military Institute of Engineer Technology, Wroclaw
Bibliografia
  • [1] Chwaściński B.: Mosty na Wiśle i ich budowniczowie, Warszawa 1997.
  • [2] Sterner W.: Mosty Warszawy, PWT, Warszawa 1960.
  • [3] Kaliszewski K., Rojewski T., Winiarski A.: Ukłony z Włocławka, karty pocztowe 1898-1945, EXPOL, Włocławek 2005.
  • [4] Watanabe E., Wang C.M., Utsunomiya T., Moan T.: Very Large Floating Structures: Applications, Analysis and Design. Centre for Offshore Research and Engineering National University of Singapore. CORE Report No. 2004-02.
  • [5] Watanabe E., Utsunomiya T.: Analysis and design of floating bridges, Progress Structural Eng. Mater., 5 (2003) 127-144.
  • [6] Bank L.C.: Application of FRP composites to bridges in the USA. Int. Colloquium on Application of FRP to Bridges, Japan Society of Civil Engineers, S. Yamada, ed., Tokyo, Japan 2006, pp. 9-16.
  • [7] Keller T.: Overview of fiber-reinforced polymers in bridge construction, Struct. Eng. Int., 12 (2002) 66-70.
  • [8] Zobel H., Karwowski W., Sarnowska J., Wróbel M.: Nowa generacja mostów – mosty z kompozytów polimerowych, część I – Autostrady 4/2004, s. 16-19, część II – Autostrady 5/2004, s. 54-63.
  • [9] Kamyk Z., Szelka J.: Zastosowanie kompozytów w mostach wojskowych, Archiwum Instytutu Inżynierii Lądowej, 5 (2009) 133-142.
  • [10] Robinson M.J., Kosmatka J.B.: Light-weight fiber-reinforced polymer composite deck panels for extreme applications, J. Composites Constr., 12 (2008) 344-354.
  • [11] Robinson M.J., Kosmatka J.B.: Development of a short-span fiber reinforced composite bridge for emergency response and military applications, J. Bridge Eng., 7 (2008) 388-397.
  • [12] Wight R.G., Shyu C.T., Tanovic R., Erki M.A., Heffernan P.J.: Short-span deployable GFRP tapered box beam bridge, Proc., 4th Int. Conf. on Advanced Composite Materials in Bridges and Structures. 2004, pp. 20-23.
  • [13] Błażejewski W., Gąsior P.P., Kaleta J., Krzyżak A., Rybczyński R.: Wytwarzanie i badania sześciokątnych profili kompozytowych do bloków komórkowych, [In:] Materiały polimerowe, T. Spychaj, S. Spychaj (ed.), Szczecin 2010, pp. 117-118.
  • [14] STANAG 2021, Military Load Classification of Bridges, Ferries, Rafts and Vehicles, NATO NSA, Brussels 2006.
  • [15] PN-85/S-10030, Obiekty mostowe. Obciążenia.
  • [16] 1NO-54-A201A1 2007, Parki pontonowe. Wymagania ogólne.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65314321-e5a8-4606-acec-1c0509d781d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.