PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of kinetic parameters of coal pyrolysis to simulate the process of underground coal gasification (UCG)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose The aim of the research presented in this paper was to determine the values of the kinetic parameters of coal pyrolysis from two areas of the planned experiment, UCG, i.e. the Barbara Experimental Mine of the Central Mining Institute and the Wieczorek Mine. Methods The thermal decomposition of coal analysis used the thermogravimetric technique. The test was carried out in a temperature range of 298-1173 K in a nitrogen atmosphere for three fixed heating rates, β – 5, 10, and 15 K/min. A selection of sample heating rates of coal and reaction environments were designed to reflect the conditions seen during the process of underground coal gasification. The kinetic parameters were determined by using modified Coats-Redfern, Kissinger and Mianowski-Radko methods. Results The values of the activation energy, E, and the pre-exponential factor, A, were determined for a given model of the first order decomposition reaction of coal. The study successfully compared kinetic parameters of the tested coals. Practical implications Designated kinetic parameters may be used to model the process of pyrolysis and – as preliminary data – for installation design of pilot underground coal gasification. Originality/ value The devolatilization of a homogenous lump of coal is a complex issue. Currently, the CFD technique (Computational Fluid Dynamics) is commonly used for the multi-dimensional and multiphase phenomena modelling. The mathematical models, describing the kinetics of the decomposition of coal, proposed in the article can, therefore, be an integral part of models based on numerical fluid mechanics.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Interdisciplinary PhD Studies in the Field of Clean Coal Technologies, Central Mining Institute (Katowice, Poland)
Bibliografia
  • Arenillas, A., Rubiera, F., Pevida, C., & Pis, J.J. (2001). A comparison of different methods for predicting coal devolatilisation kinetics. Journal of Analytical and Applied Pyrolysis, 58–59, 685–701. doi: 10.1016/S0165-237 (00)00183-2.
  • Cai, J., Wang, Y., Zhou, L., & Huang, Q. (2008). Thermogravimetric analysis and kinetics of coal/plastic blends during copyrolysis in a nitrogen atmosphere. Fuel Processing Technology, 89(1), 21–27. doi: 10.1016/j.fuproc.2007.06.006.
  • Coats, A.W., & Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201, 68–69. doi: 10.1038/201068a0.
  • Jüntgen, H. (1983). Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal. Fuel, 63(6), 731–737. doi: 10.1016/0016-2361(84)90058-9.
  • Kissinger, H.E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702–1706. doi: 10.1021/ac60131a045.
  • Kubica, K. (2003). Przemiany termochemiczne węgla i biomasy. Termochemiczne przetwórstwo węgla i biomasy [Thermochemical conversion of coal and biomass. Thermochemical processing of coal and biomass]. Zabrze: Instytut Chemicznej Przeróbki Węgla.
  • Ledakowicz, S., & Stolarek, P. (2000). Wyznaczanie parametrów kinetycznych pirolizy odpadów za pomocą analizy termograwimetrycznej [Determination of kinetic parameters for the pyrolysis of waste by thermogravimetric analysis]. Inżynieria Chemiczna i Procesowa, 21(2), 345–357.
  • Lourakis, M.I.A., & Argyros, A.A. (2005). Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on (Vol. 2, pp. 1526–1531). IEEE. doi:10.1109/ICCV.2005.128.
  • Łabojko, G., Kotyczka-Morańska, M., Plis, A., & Ściążko, M. (2012). Kinetic study of Polish hard coal and its char gasification using carbon dioxide. Thermochimica Acta, 549, 158–165. doi: 10.1016/j.tca.2012.09.029.
  • Mianowski, A. (2000). Thermal Dissociation in Dynamic Conditions by Modeling Thermogravimetric Curves Using The Logarithm of Conversion Degree. Journal of Thermal Analysis and Calorimetry, 59(3), 747–762.
  • Mianowski, A., & Radko, T. (1993). Isokinetic effect in coal pyrolysis. Fuel, 72(11), 1537–1539. doi: 10.1016/0016-2361(93)90012-Q.
  • Mianowski, A., & Radko, T. (1995). Thermokinetic analysis of coal pyrolysis process. Journal of Thermal Analysis, 43(1), 247–259. doi: 10.1007/BF02635992.
  • Mianowski, A., Butuzova, L., Radko, T., & Turchanina, O. (2005). Thermokinetic analysis of the decomposition of Ukrainian coals from the Donetz Basin. Bulletin of Geosciences, 80(1), 39–43.
  • Minkina, M., Zasusz-Zuberek, E., & Mianowski, A. (2006). The evaluation of chars reactivity using thermogravimetry and multivariate statistical method. Acta Geodynamica et Geomaterialia, 3(2), 51–55.
  • Ściążko, M. (2010). Modele klasyfikacji węgla w ujęciu termodynamicznym i kinetycznym [Models of coal classification in thermodynamics and kinetics]. (Seria Rozprawy, Monografie nr 210). Kraków: Wydaw. AGH.
  • Szczepaniak, W. (1997). Metody instrumentalne w analizie chemicznej [Instrumental methods in chemical analysis]. Warszawa: PWN.
  • Tiwari, P. (2007). Oil shale pyrolysis: Benchscale experimental studies and modeling (A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy). The University of Utah.
  • Tomeczek, J. (1991). Zgazowanie węgla [Coal gasification]. (Skrypty Centralne nr 1551/4). Gliwice: Politechnika Śląska.
  • Urbanovici, E., Popescu, C., & Segal, E. (1999). Improved Iterative Version of the Coats-Redfern Method to Evaluate Non-Isothermal Kinetic Parameters. Journal of Thermal Analysis and Calorimetry, 58(3), 683–700. doi: 10.1023/A:1010125132669.
  • Urych, B., Kabiesz, J., & Iwaszenko, S. (2013). Proces pirolizy węgla w technologii podziemnego zgazowania węgla (PZW) [The process of coal pyrolysis in underground coal gasification technology (UCG)]. Przegląd Górniczy, 69(12), 42–50.
  • Westmoreland, P.R., & Forrester III, R.C. (1977). Pyrolysis of large coal blocks: implications of heat and mass transport effects for in situ gasificiation. Am. Chem. Soc., Div. Fuel Chem., Prepr.;(United States), 22(CONF-770301-P2).
  • Yang, Q., Wu, S. (2009). Thermogravimetric characteristics of wheat straw lignin. Cellulose Chemistry and Technology, 43(4–6), 133–139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-652f11a3-9f7d-4b7b-94ce-d7a3beb3358d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.