PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solid Particle Erosion of Laser Surface Melted Ductile Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents research on solid particle erosive wear resistance of ductile cast iron after laser surface melting. This surface treatment technology enables improvement of wear resistance of ductile cast iron surface. For the test ductile cast iron EN GJS-350-22 surface was processed by high power diode laser HPDL Rofin Sinar DL020. For the research single pass and multi pass laser melted surface layers were made. The macrostructure and microstructure of multi pass surface layers were analysed. The Vickers microhardness tests were proceeded for single pass and multi pass surface layers. The solid particle erosive test according to standard ASTM G76 – 04 with 30°, 60° and 90° impact angle was made for each multi pass surface layer. As a reference material in erosive test, base material EN GJS-350-22 was used. After the erosive test, worn surfaces observations were carried out on the Scanning Electron Microscope. Laser surface melting process of tested ductile cast iron resulted in maximum 3.7 times hardness increase caused by microstructure change. This caused the increase of erosive resistance in comparison to the base material.
Rocznik
Strony
105--111
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Welding, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Welding, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Welding, Gliwice, Poland
autor
  • Silesian University of Technology, Department of Welding, Gliwice, Poland
Bibliografia
  • [1] Stachowiak, G.W., Batchelor, A.W. (2014). Engineering Tribology. (4th ed.). Waltham: Butterworth-Heinemann.
  • [2] Shimizu, K., Noguchi, T., Seitoh, H., Okada, M. & Matsubara, Y. (2001). FEM analysis of erosive wear. Wear. 250, 779-784. DOI: 10.1016/S0043-1648(01)00716-5.
  • [3] Yaer, X., Shimizu, K., Matsumoto, H., Kitsufo, T. & Momono, T. (2008). Erosive wear characteristics of spheroidal carbides cast iron. Wear. 264, 947-957. DOI: 10.1016/j.wear.2007.07.002.
  • [4] Moravec, J., Novakova, I., at al. (2018). Application possibilities of the low-temperature repairs on creep-resistance turbine components from material GX23CrMoV12-1. Innovative Technologies In Engineering Production (Itep'18.). 244(01017), 1-8. DOI: 10.1051/matecconf/201824401017.
  • [5] Elliot, R. (1988). Cast iron technology. London: Butterworth & Co.
  • [6] Lerner, Y.S. (1994). Wear resistance of ductile irons. Journal of Materials Engineering and Performance. 3(3), 403-408. DOI: 10.1007/BF02645338.
  • [7] Żuk, M., Górka, J., Dojka, R. & Czupryński, A. (2017). Repair welding of cast iron coated electrodes. IOP Conference Series; Materials Science and Engineering. 277, 1-8. DOI:10.1088/1757-899X/227/1/012139.
  • [8] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M., Sobieraj, J., Matuszkiewicz, G., Szwalbe, L. & Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 17(1), 105-110.
  • [9] Jakubus, A. & Soiński, M.S. (2019). The influence of the shape of graphite precipitates on the cast iron abrasion resistance. Archives of Foundry Engineering. 14(4), 87-90.
  • [10] Kwok, C.T., Man, H.C., Cheng, F.T. & Lo, K.H. (2016). Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion. Surface & Coating Technology. 291, 189-204. DOI: 10.1016/j.surfcoat.2016.02.019.
  • [11] More, S.R., Bhatt, D.V. & Menghani, J.V. (2017). Recent research status on laser cladding as erosion resistance technique – an overview. Materials Today: Proceedings. 4(9), 9902-9908. DOI: 10.1016/j.matpr.2017.06.291.
  • [12] Kwok, C.T. (2012). Laser surface modification of alloy for corrosion and erosion resistance. Cambridge: Woodhead Publishing Limited.
  • [13] Alabeedi, K.F., Abboud, J.H. & Benyounis, K.Y. (2009). Microstructure and erosion resistance enhancement of nodular cast iron by laser melting. Wear. 266, 925-933. DOI: 10.1016/j.wear.2008.12.015.
  • [14] Gadag, S.P. & Srinivasan, M.N. (1995). Cavitation erosion of laser-meted ductile iron. Journal of Materials Processing Technology. 51, 15-163. DOI: 10.1016/0924-0136(94)01601-V.
  • [15] Pagano, N., Angelini, V., Ceschini, L. & Campana, G. (2016). Laser remelting for enhancing tribological performances of a ductile iron. Procedia CIRP. 41, 987-991. DOI: 10.1016/j.procir.2015.12.131.
  • [16] Janicki, D. (2018). Shaping the structure and properties of surface layers of ductile cast iron by laser alloying. Gliwice: Wydawnictwo Politechniki Śląskiej.
  • [17] Janicki, D. (2018). Microstructure and sliding wear behaviour of in-situ TiC-reinforced composite surface layers fabricated on ductile cast iron by laser alloying. Materials. 11, 1-17. DOI: 10.3390/ma11010075.
  • [18] Sun, G., Zhou, R., Li, P., Feng, A. & Zhang, Y. (2011). Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls. Surface & Coatings Technology. 205, 2747-2754. DOI: 10.1016/j.surfcoat.2010.10.032.
  • [19] Shamanian, M., Mousavi Abarghouie, S.M.R. & Mousavi Pour, S.R. (2010). Effects of surface alloying on microstructure and wear behaviour of ductile iron. Materials and Design. 31, 2760-2766. DOI: 10.1016/j.matdes.2010.01.017.
  • [20] Arabi Jeshvaghani, R., Shamanian, M. & Jaberzadeh, M. (2011). Enhancement of ductile iron surface alloyed by stellite 6. Materials and Desing. 32, 2028-2033. DOI: 10.1016/j.matdes.2010.11.060.
  • [21] Wróbel, T., Przyszlak, N. & Dulska, A. (2019). Technology of alloy layers on surface of castings. International Journal of Metalcasting. 13(3). 604-610. DOI: 10.1007/s40962-018-00304-x.
  • [22] Węgrzyn, T., Piwnik, J., Łazarz, B. & Tarasiuk, W. (2015). Mechanical properties of shaft surfacing with micro-jet
  • cooling. Mechanika (Kauno Technologijos Universitetas). 21(5), 419-423. DOI: 10.5755/j01.mech.21.5.9545.
  • [23] Janerka, K, Jezierski, J., Bartocha, D. & Szajnar, J. (2014). Analysis of ductile iron production on steel scrap base. International Journal of Cast Metals Research. 27(4), 230-234. DOI: 10.1179/1743133614Y.0000000103.
  • [24] Winczek, J., Gucwa, M., Mičian, M., Koňar, R. & Parzych, S. (2019). The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials. 64(3), 1111-1115.
  • [25] Górka, J. (2002). Welding technologies for the removal of defects in welded joints and iron-castings. Welding International. 16(5), pp. 341-346. DOI: 10.1080/09507110209549543.
  • [26] Arias-Gonzalez, F., de Val, J., Comesana, R., Penide, J., Lusquinos, F., Quintero, F., Riveiro, A., Boutinguiza, M. & Pou, J. (2016). Fiber laser cladding of nickel-based alloy on cast iron. Applied Surface Science. 374, 197-205. DOI: 10.1016/j.apsusc.2015.11.023.
  • [27] Li, Y., Dong, S., Yan, S., Liu, X., He, P. & Xu, B. (2018). Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings. Surface & Coatings Technology. 347, 20-28. DOI: 10.1016/j.surfcoat. 2018.04.065.
  • [28] Grum, J. & Sturm, R. (1996). Microstructure analysis of nodular iron 400-12 after laser surface melt hardening. Materials Characterisation. 37, 81-88. DOI: 10.1016/S1044-5803(96)00063-0.
  • [29] Standard: EN 1563:2018-10: Founding. Spheroidal graphite cast irons.
  • [30] Standard: ASTM G76 – 04: Standard test method for conducting erosion tests by solid particle impingement using gas jets.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-652e106c-2e8a-475b-8722-60b2d70eb6ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.