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Matej URBANSKÝ1 

 

 

 

HARMONIC ANALYSIS OF TORSIONAL VIBRATION FORCE 

EXCITATION 
 

Summary. In our department, we deal with various methods for the continuous 

tuning of torsional oscillating mechanical systems during their operation, mainly 

in terms of torsional vibration magnitude. Therefore, in order to carry out 

necessary experimental research, we need torsional oscillation exciters, which 

operate on various principles. The objective of this paper is to conduct a harmonic 

analysis of a torsional oscillation force excitation mechanism, in order to identify 

the possibilities of its application. 
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1. INTRODUCTION 

 

In the laboratory of our workplace (namely, the Department of Construction, Automotive 

and Transport Engineering), we are involved in the measuring and tuning of torsional 

oscillation in torsional oscillating mechanical systems (TOMSs). 

In terms of dynamics, it is possible to define a TOMS (Fig. 1) as a mass disk system. These 

disks are connected together with flexible bonds, wherein rotary power transmission occurs, 

with torsional beats and vibration arising during operation [1-6,8-10,12]. Their intensity 

depends on the dynamic terms of the respective mechanical system (mainly on natural 

frequency and torsional excitation source). 
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Fig. 1. Torsional oscillating mechanical system 

 

The most dangerous torsional vibration is caused by devices that are working with time-

variable periodic torque, e.g., [1,2,5-10,13,15,16]: 

 

 Piston machines (combustion engines, compressors) 

 Gear transmissions and cam mechanisms 

 Propellers (of ships, fans etc.) 

 

The system reaches the most critical torsional vibration values in the resonance area when 

the mechanical system’s natural frequency is equal to the excitation frequency. The resonance 

is much higher when loading the mechanical system’s parts. 

In our department, we deal with the continuous tuning of TOMSs during their operation 

(see [8-10,12]). This continuous tuning mainly concerns the magnitude of torsional vibrations 

(but also the magnitude of rectilinear vibrations or noise arising from torsional vibrations). 

For this continuous tuning, we use pneumatic flexible shaft couplings (pneumatic torsional 

vibration tuners) developed by our department (see [11,14]). 

The torsional stiffness of the given pneumatic tuners, and in turn the natural frequencies of 

the torsional systems, can be changed by adjusting the gaseous media (most commonly, air) 

pressure in their pneumatic flexible elements. With a suitable value of torsional stiffness k (k2 

< k1 < k3), resonances from individual harmonic components of excitation (Fig. 2) can be 

moved from the operational speed (n) range (OSR) of the mechanical system, and herewith 

the value of dynamic component MD of the transmitted load torque can be reduced, i.e., [6,8-

10,12,15]. 

 

 
 

Fig. 2. Mechanical system’s tuning principle 

 

In our laboratory, in order to carry out our complex research practice, we need torsional 

oscillation exciters, which operate on various principles, in addition to torsional oscillation 

tuners. The objective of this paper is to perform a harmonic analysis of a special torsional 

oscillation force excitation mechanism, in order to identify the possibilities of its application. 

 

 



Harmonic analysis of torsional vibration force excitation 183. 
 

2. FORCE TORSIONAL OSCILLATION EXCITATION MECHANISM 

 

The mechanism for force torsional oscillation excitation, as shown in Figure 3, produces, 

during its operation, the load torque of an alternating character. The force of the extended 

tension spring (1) and arm depends on the turn angle of the rotary flange, on which the 

excentre is (4) mounted. To avoid damage to the spring eyes during operation of the 

mechanism (as a consequence of frictional wear), it is necessary to use bearings in places (2) 

and (3). It is possible to adjust the spring preload by a spring extension fixed to the base plate 

(5). As we can see in Figure 3b, this mechanism can be mounted: 

 to the frontal surface of the driving or driven machine flange 

 to the crank of the crankshaft situated in the drive chain of a mechanical system 

 

 

 

 

a) b) 

 

Fig. 3. Force torsional oscillation excitation mechanism: a) construction example and 

b) application scheme 

 

 

3. DERIVATION OF MATHEMATIC FORMULAS FOR FORCE EXCITATION 

 

In Figure 4, a schematic drawing of the given mechanism with force terms is presented. 

 



184 M. Urbanský 

 

 
 

Fig. 4. Mechanism scheme with force terms 

 

Consequently, as shown in Table 1, formulas are derived for torque Mk from Figure 4, 

where: Mk - torque, which it is necessary to expend on rotation in the direction of rotation 

angle φ, which increases counterclockwise; F - spring force, which is decomposed to 

components F1 and F2; L - distance of the axes of the spring grip pins in the bottom dead 

centre. 

 

Tab. 1 

Derived formulas for torque Mk 
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4. HARMONIC ANALYSIS OF THE EXCITATION 

 

In Table 2, the amplitude values of the first, second and third harmonic components (HCs) 

and the various eccentricity values of the phase angle without a spring preload are computed. 

The amplitudes of higher HCs have only a negligible size (less than 1% of the first HC 

amplitude). 
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Tab. 2 

Computed values of harmonic components without spring preload 

Eccentricity 

[% of L] 

1st HC 

amplitude 

MA1 [N.m] 

(MA2/MA1).100 

[%] 

(MA3/MA1).100 

[%] 

2nd HC 

phase 

angle 

shifting 

ψ2 [°] 

3rd HC 

phase 

angle 

shifting 

ψ3 [°] 

L [m] 

1 0.040.x 49.443 0.367 180.5 181 Constant 

5 x 47.324 1.700 180.5 181 Constant 

10 4.019.x 44.896 3.060 180.5 181 Constant 

15 9.076.x 42.686 4.171 180.5 181 Constant 

20 16.187.x 40.668 5.075 180.5 181 Constant  

25 23.359.x 38.817 5.808 180.5 181 Constant 

50 102.238.x 31.503 7.818 180.5 181 Constant 

 

In Table 3, the amplitude values of the first, second and third harmonic component (HCs) 

involving various spring preloads with a constant eccentricity value of 10% of L are 

computed. The value of ψ2, in all cases, is 180.5°, while the value of ψ3, in all cases, is 181°. 

 

Tab. 3 

Computed values of harmonic components with spring preload 

 

Eccentricity 

[% of L] 

1st HC 

amplitude 

MA1 [N.m] 

(MA2/MA1).100 

[%] 

(MA3/MA1).100 

[%] 

Spring preload 

[stretched % 

of L] 

L [m] 

10 x 44.896 3.060 0 Constant 

10 1.494.x 28.541 1.945 5 Constant 

10 1.990.x 20.318 1.385 10 Constant 

10 2.483.x 15.369 1.047 15 Constant  

10 2.977.x 12.063 0.822 20 Constant  

10 3.472.x 9.699 0.661 25 Constant  

10 3.966.x 7.924 0.540 30 Constant 

10 4.461.x 6.542 0.446 35 Constant  

10 4.955.x 5.437 0.370 40 Constant  

 

It is possible to describe the dependence of load torque Mk, which arises during the 

operation of the given mechanism, on rotation angle φ using the following formula: 

 

Mk = MA1.sin φ + MA2 sin (2.φ + ψ2) + MA3 sin (3.φ + ψ3),  

 

where: MA1, MA2, MA3 - amplitudes of the first, second and third HCs of excitation; Ψ2 and Ψ3 

- phase angle shifting of these second and third HCs towards the first HC. 
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5. CONCLUSION 

 

From the values stated in Tables 2 and 3, it is possible to say that: 

 

 Without a spring preload, but with a linearly increasing eccentricity percentage value, 

the first HC amplitude value increases quadratically, the second HC amplitude 

percentage decreases and the third HC percentage increases. 

 With a suitable spring preload, we can increase the first HC amplitude value, 

substantially reduce the second HC amplitude value and minimize the third HC 

amplitude value to a negligible size (less than 1% of the first HC amplitude). 

 

These facts relate to the property of the given mechanism (not its deficiency). Among 

general advantages of the mechanism, it is possible to mention: 

 

 Negligible small friction resistances while operational 

 Simplicity of its construction and therefore low manufacturing costs  

 Simple and accurate calculation of load torque dependence 

 

The main disadvantage of the given mechanism is the rise of relatively high radial loading 

in the system at the point of the excentre in relation to the rotary part mounting, which should 

be provided at the shafts, and the dimension of the bearings. 
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