Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the cellular automaton (CA) model for tracking the development of dendritic structure in non-equilibrium solidification conditions of binary alloy. Thermal, diffusion and surface phenomena have been included in the mathematical description of solidification. The methodology for calculating growth velocity of the liquid-solid interface based on solute balance, considering the distribution of the alloy component in the neighborhood of moving interface has been proposed. The influence of solidification front curvature on the equilibrium temperature was determined by applying the Gibbs Thomson approach. Solute and heat transfer equations were solved using the finite difference method assuming periodic boundary conditions and Newton cooling boundary condition at the edges of the system. The solutal field in the calculation domain was obtained separately for solid and liquid phase. Numerical simulations were carried out for the Al-4 wt.% Cu alloy at two cooling rates 15 K/s and 50 K/s. Microstructure images generated on the basis of calculations were compared with actual structures of castings. It was found that the results of the calculations are agreement in qualitative terms with the results of experimental research. The developed model can reproduce many morphological features of the dendritic structure and in particular: generating dendritic front and primary arms, creating, extension and coarsening of secondary branches, interface inhibition, branch fusion, considering the coupled motion and growth interaction of crystals.
Czasopismo
Rocznik
Tom
Strony
87--92
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- Foundry Department, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Foundry Department, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
- Foundry Department, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
- [1] Miller, J.D., Yuan, L., Lee, P.D. & Pollock T.M. (2014). Simulation of diffusion-limited lateral growth of dendrites during solidification via liquid metal cooling. Acta Materialia. 69, 47-59.
- [2] Genau, A.L., Freedman, A.C. & Ratke, L. (2013). Effect of solidification conditions on fractal dimension of dendrites. Journal of Crystal Growth. 363, 49-54.
- [3] Stefanescu, D.M. (2009). Science and Engineering of Casting Solidification. Springer.
- [4] Wołczyński, W., Ivanova, A.A., Kwapisiński, P. & Olejnik, E. (2017). Structural Transformations Versus Hard Particles Motion in the Brass Ingots. Archives of Metallurgy and Materials. 62(4), 2461-2467.
- [5] Beltran-Sanchez, L. & Stefanescu, D.M. (2004). A Quantitative Dendrite Growth Model and Analysis of Stability Concepts. Metallurgical and Materials Transactions A. 35, 2471-2485.
- [6] Kuangfei, W., Shan, L., Guofa, M., Changyun, L., Hengzhi, F. (2010). Simulation of microstructural evolution in directional solidification of Ti-45at.%Al alloy using cellular automaton method. China Foundry. 7, 47-51.
- [7] Zyska, A., Konopka, Z., Łągiewka, M. & Nadolski, M. (2016). Modelling of the dendritic crystallization by the cellular automaton method. Archives of Foundry Engineering. 16(1), 99-106.
- [8] Zhu, M.F., Cao, W., Chen, S.L., Hong, C.P. & Chang, Y.A. (2007). Modeling of Microstructure and Microsegregation in Solidification of Multi-Component Alloys. Journal of Phase Equilibria and Diffusion. 28, 130-138.
- [9] Zhu, M.F., Kim, J.M. & Hong, C.P. (2001). Modeling of Globular and Dendritic Structure Evolution in Solidification of an Al–7%Si Alloy. ISIJ International. 41(9), 992-998.
- [10] Zaeem, M.A., Yin, H. & Felicelli, S.D. (2013). Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods. Applied Mathematical Modelling. 37, 3495-3503.
- [11] Choudhury, A., Reuther, K., Wesner, E. & Rettenmayr, M. (2012). Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Computational Materials Science. 55, 263-268.
- [12] Beltran-Sanchez, L. & Stefanescu, D.M. (2003). Growth of Solutal Dendrites: A Cellular Automaton Model and Its Quantitative Capabilities. Metallurgical and Materials Transactions A. 34, 367-382.
- [13] Luo, S., Wang, W. & Zhu, M. (2018). Cellular automaton modeling of dendritic growth of Fe-C binary alloy with thermosolutal convection. International Journal of Heat and Mass Transfer. 116, 940-950.
- [14] Chen, R., Xu, Q. & Liu, B. (2016). Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model. China Foundry. 13(2), 114-122.
- [15] Xiong, S. & Wu, M. (2012). Experimental and Modeling Studies of the Lamellar Eutectic Growth of Mg-Al Alloy Metallurgical and Materials Transactions A. 43, 208-218.
- [16] Dantzig, J.A., Rappaz, N. (2016). Solidification. Engineering Science, Epfl Press.
- [17] Bower, T.F., Brody, H.D. & Flemings, M.C. (1996). Measurements of solute redistribution in dendritic solidification. Transaction of Metallurgical Society of AIME, 236, 624-634.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-652b132e-eadf-4116-b0b7-ad52a0dce938