PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer engineering in designing and fabrication of tissue analogue-type coating dedicated for the cardiovascular regeneration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work was related to the development of novel methods in designing and fabrication of thin, porous, tissue-like coatings. The surface modification was designed to create an environment for the appropriate cell growth. The originally designed system was established to prepare porous, synthetic coatings. The dedicated software was elaborated to control the sequential coating deposition based on the electrostatic interaction. The finite elements method (FEM) was used to determine structural and mechanical properties of the coatings. The numerical model was verified experimentally. The performed simulation predicted the coating stabilization by the graphene nanoparticles. Graphene was introduced as a stabilizer of the polymer coating. The elaborated automatic system allowed preparation the porous coatings, repetitively. Coatings were stabilized by the cross-linking chemical reaction using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide. Nanoparticles were introduced by means of the electrostatic interaction. Mechanical analysis revealed an influence of the porous structure modification on the coating stiffness. Dynamic tests on blood subjected to the aortic flow showed antithrombogenic properties of the elaborated coatings.
Rocznik
Strony
621--630
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
autor
  • Laboratoire des Matériaux et du Génie Physique, Grenoble Institute of Technology, Minatec, 3, Parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France
  • Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf, Austria
autor
  • Czestochowa University of Technology, Faculty of Civil Engineering, 69 Dabrowskiego Street, 42-201 Czestochowa, Poland
autor
  • Department of Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Cracow, Poland
Bibliografia
  • [1] S. Naeem, G. Sadowski, pePC-SAFT: modeling of polyelectrolyte systems: 1. Vapor–liquid equilibria, Fluid Phase Equilibria 299 (2010) 84–93.
  • [2] G.S. Manning, J. Ray, Counterion condensation revisited, Journal of Biomolecular Structure and Dynamics 16 (1998) 461–476.
  • [3] M. Nagvekar, R.P. Danner, An excess Gibbs free energy model for polyelectrolyte solutions, Fluid Phase Equilibria 53 (1989) 219–227.
  • [4] M.H. Hao, S.C. Harvey, A lattice theory for counterion binding on polyelectrolytes, Macromolecules 25 (1992) 2200–2208.
  • [5] E. Nordmeier, Studies of polyelectrolyte solutions. V. Effects of counterion binding by polyions of varying charge density and constant degree of polymerization, Polymer Journal 26 (1994) 539–550.
  • [6] E. Nordmeier, Advances in polyelectrolyte research: counterion binding phenomena, dynamic processes, andthe helix-coil transition of DNA, Macromolecular Chemistry and Physics 196 (1995) 1321–1374.
  • [7] E. Nordmeier, W. Dauwe, Studies of polyelectrolyte solutions. I. Counterion condensation by polystyrenesulfonate, Polymer Journal 23 (1991) 1297–1305.
  • [8] H.B. Lu, G. Huang, B. Wang, A. Mamedov, S. Gupta, Characterization of the linear viscoelastic behavior of single-wall carbon nanotube/polyelectrolyte multilayer nanocomposite film using nanoindentation, Thin Solid Films 500 (2006) 197–202.
  • [9] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness. . . indentation experiments, Journal of Materials Research 7 (1992) 1564.
  • [10] B. Oommen, K.J. Van Vliet, Effects of nanoscale thickness and elastic nonlinearity on measured mechanical properties of polymeric films, Thin Solid Films 513 (2006) 235–242.
  • [11] M.C. Berg, S.Y. Yang, P.T. Hammond, M.F. Rubner, Controlling mammalian cell interactions on patterned polyelectrolyte multilayer surfaces, Langmuir 20 (4) (2004) 1362–1368.
  • [12] J.D.Y. Mendelsohn, S.Y. Hiller, A.I. Hochbaum, M.F. Rubner, Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films, Biomacromolecules 4 (2003) 96.
  • [13] R. Saha, W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia 50 (2002) 23–38.
  • [14] R. Major, Self-assembling surfaces of blood-contacting materials, Journal of Materials Science: Materials in Medicine 24 (2013) 725–733.
  • [15] M.Y. Chan, J.I. Weitz, Y. Merhi, R.A. Harrington, R.C. Becker, Catheter thrombosis and percutaneous coronary intervention: fundamental perspectives on blood, artificial surfaces and antithrombotic drugs, Journal of Thrombosis 28 (2009) 366–380.
  • [16] B.D. Ratner, The catastrophe revisited: blood compatibility in the 21st century, Biomaterials 28 (2007) 5144–5147.
  • [17] L. Sheng, O. Junfei, L. Zhangpeng, Y. Shengrong, W. Jinqing, Layer-by-layer assembly and tribological property of multilayer ultrathin films constructed by modified graphene sheets and polyethyleneimine, Applied Surface Science 258 (2012) 2231–2236.
  • [18] C. Picart, B. Sengera, K. Senguptac, F. Dubreuild, A. Feryd, Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques, Colloids and Surfaces A: Physicochemical and Engineering Aspects 303 (2007) 30–36.
  • [19] A. Gasparetto, V. Zanotto, Optimal trajectory planning for industrial robots, Advances in Engineering Software 41 (2010) 548–556.
  • [20] E. Gambao, C. Balaguer, F. Gebhart, Robot assembly system for computer-integrated construction, Automation in Construction 9 (2000) 479–487.
  • [21] R. Major, J.M. Lackner, K. Gorka, P. Wilczek, B. Major, Inner surface modification of the tube-like elements for medical applications, RSC Advances 3 (2013) 11283–11291.
  • [22] B. Yin, W. Wang, Y. Jin, The application of component mode synthesis for the dynamic analysis of complex structures using ADINA, Computers & Structures 5/6 (1997) 931–938.
  • [23] R. Major, P. Lacki, Finite-element modeling of thin films deposited on the polyurethane substrate, Archives of Metallurgy and Materials 50 (2005) 379–385.
  • [24] K.J. Bathe, J. Walczak, H. Zhang, Proceedings of the 9th ADINA Conference, 1993, 511–521.
  • [25] http://www.adina.com/.
  • [26] C. Picart, B. Senger, K. Sengupta, F. Dubreuil, A. Fery, Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques, Colloids and Surfaces A: Physicochemical and Engineering Aspects 303 (2007) 30–36.
  • [27] L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking, Biomacromolecules 5 (2) (2004) 284– 294.
  • [28] M. Sanak, B. Jakiela, W. Wegrzyn, Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests, Bulletin of the Polish Academy of Sciences – Technical Sciences 58 (2) (2010) 317–322.
  • [29] D. Varont, R. Dardiki, B. Shenkmanl, S. Kotev-Emeth, N. Farzarne, I. Tamarinl, N. Savion, A new method for quantitive analysis of whole blood platelet interaction with extracellular matrix under flow conditions, Thrombosis Research 85 (4) (1997) 283–294.
  • [30] O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy, Journal of Materials Chemistry 22 (2012) 13773–13781.
  • [31] M. Yin, J. Qian, Q. An, Q. Zhao, Z. Gui, J. Li, Polyelectrolyte layer-by-layer self-assembly at vibration condition and the pervaporation performance of assembly multilayer films in dehydration of isopropanol, Journal of Membrane Science 358 (2010) 43–50.
  • [32] K. Yang, J. Wan, S. Zhang, Y. Zhang, S. Lee, Z. Liu, In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice, ACS Nano 5 (2011) 516.
  • [33] X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu, W. Li, C. Fan, Q. Huang, Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration, Carbon 49 (2011) 986.
  • [34] A. Sasidharan, L.S. Panchakarla, A.R. Sadanandan, A. Ashokan, P. Chandran, C.M. Girish, D. Menon, S.V. Nair, C. N. Rao, M. Koyakutty, Hemocompatibility and macrophage response of pristine and functionalized grapheme, Small 8 (2012) 1251.
  • [35] X. Dong, Z. NingLin, S. Jian, Hemocompatibility of carboxylic graphene oxide, Chemical Journal of Chinese Universities 31 (2010) 2354.
  • [36] S.K. Singh, M.K. Singh, M.K. Nayak, S. Kumari, S. Shrivastava, J. J. Grácio, D. Dash, Thrombus inducing property of atomically thin graphene oxide sheets, ACS Nano 5 (2011) 4987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6528a27f-48d6-48e3-8a31-b47875cb0d05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.