PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing BaSrTiO3 gas sensor properties under NO2 exposure: the impact of impedance spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Impedance spectroscopy is an appropriate technique for studying the complexity of materials, in which their different frequency relationships can be exploited in such a manner that they can be efficiently separated. Barium strontium titanate BaSrTiO3 (BST) is a ferroelectric material with unique properties that make it useful in a range of electronic applications. BST plays an important role in the field of gas-sensing applications. The potential application of BST material as a gas sensor for detecting nitrogen dioxide (NO2) in the atmosphere was studied. Impedance spectroscopy studies were conducted across a wide frequency range from 10-1 to 106 Hz, in the temperature range of 100˚C to 350˚C and a relative humidity of 50%, and both in air and the presence of NO2 in concentrations from 0.5 to 5 ppm. The results of the impedance analysis indicate that the broadband models, which comprise both single and parallel RC elements, can accurately represent the NO2 gas interaction mechanism with the gas-sensitive layer of the BST material. These models were found to effectively capture changes in parameters associated with the interaction.
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
  • State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
  • Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Optoelectronics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland
autor
  • Department of Optoelectronics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland
  • Department of Surface Engineering and Materials Characterization, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Barsoukov, E., & Macdonald, J.R. (Red.). (2005). Impedance Spectroscopy: Theory, Experiment, and Applications (1. wyd.). Wiley. https://doi.org/10.1002/0471716243
  • [2] Boukamp, B.A. (2004). Electrochemical impedance spectroscopy in solid state ionics: Recent advances. Solid State Ionics, 169(1-4), 65-73. https://doi.org/10.1016/j.ssi.2003.07.002
  • [3] Irvine, J.T.S., Sinclair, D.C., & West, A.R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2(3), 132-138. https://doi.org/10.1002/adma.19900020304
  • [4] K’Owino, I.O., & Sadik, O.A. (2005). Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(23), 2101-2113. https://doi.org/10.1002/elan.200503371
  • [5] Dean, D., Ramanathan, T., Machado, D., & Sundararajan, R. (2008). Electrical impedance spectroscopy study of biological tissues. Journal of Electrostatics, 66(3-4), 165-177. https://doi.org/10.1016/j.elstat.2007.11.005
  • [6] Randviir, E.P., & Banks, C.E. (2013). Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Analytical Methods, 5(5), 1098. https://doi.org/10.1039/c3ay26476a
  • [7] Park, S.-M., & Yoo, J.-S. (2003). Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements. Analytical Chemistry, Vol 75, Issue 21, 455 A-461 A. https://doi.org/10.1021/ac0313973
  • [8] Ciucci, F. (2019). Modeling electrochemical impedance spectroscopy. Current Opinion in Electrochemistry, 13, 132-139. https://doi.org/10.1016/j.coelec.2018.12.003
  • [9] Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M.E. (2021). Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 1(1), 41. https://doi.org/10.1038/s43586-021-00039-w
  • [10] Macdonald, J. (2005). Impedance spectroscopy: Models, data fitting, and analysis. Solid State Ionics, 176(25-28), 1961-1969. https://doi.org/10.1016/j.ssi.2004.05.035
  • [11] Balasubramani, V. (2020). Review - Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides. Journal of the Electrochemical Society. https://doi.org/10.1149/1945-7111/ab77a0
  • [12] Labidi, A., Jacolin, C., Bendahan, M., Abdelghani, A., Guerin, J., Aguir, K., & Maaref, M. (2005). Impedance spectroscopy on WO3 gas sensor. Sensors and Actuators B: Chemical, 106(2), 713-718. https://doi.org/10.1016/j.snb.2004.09.022
  • [13] Paleczek, A., Szafraniak, B., Fuśnik, Ł., Brudnik, A., Grochala, D., Kluska, S., Jurzecka-Szymacha, M., Maciak, E., Kałużyński, P., & Rydosz, A. (2021). The Heterostructures of CuO and SnOx for NO2 Detection. Sensors, 21(13), 4387. https://doi.org/10.3390/s21134387
  • [14] Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., & Morris, P.A. (2016). Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Reviews in Advanced Sciences and Engineering, 5(1), 86-105. https://doi.org/10.1166/rase.2016.1109
  • [15] Szafraniak, B., Kusior, A., Radecka, M., & Zakrzewska, K. (2020). Impedance spectroscopy in H2 sensing with TiO2/SnO2 nanomaterials. Metrology and Measurement Systems, 27(3), 417-425. https://doi.org/10.24425/mms.2020.134588
  • [16] Macdonald, D.D. (1990). Some advantages and pitfalls of electrochemical impedance spectroscopy. Corrosion, 46(3), 229-242.
  • [17] Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., Morris, P.A., & Xu, J.C. (2017). Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 241, 99-108. https://doi.org/10.1016/j.snb.2016.10.061
  • [18] European Environment Agency. & European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM). (2018). Air quality in Europe: 2018 report. Publications Office. https://doi.org/10.2800/777411
  • [19] World Health Organization. Regional Office for Europe. (2013). Health effects of particulate matter: Policy implications for countries in Eastern Europe, Caucasus and Central Asia. World Health Organization. Regional Office for Europe; WHO IRIS. https://apps.who.int/iris/handle/10665/344854
  • [20] Choi, M.S., Na, H.G., Mirzaei, A., Bang, J.H., Oum, W., Han, S., Choi, S.-W., Kim, M., Jin, C., Kim, S.S., & Kim, H.W. (2019). Room-temperature NO2 sensor based on electrochemically etched porous silicon. Journal of Alloys and Compounds, 811, 151975. https://doi.org/10.1016/j.jallcom.2019.151975
  • [21] Akbari, E., Jahanbin, K., Afroozeh, A., Yupapin, P., & Buntat, Z. (2018). Brief review of monolayer molybdenum disulfide application in gas sensor. Physica B: Condensed Matter, 545, 510-518. https://doi.org/10.1016/j.physb.2018.06.033
  • [22] Rana, Md.M., Ibrahim, D.Sh., Mohd Asyraf, M.R., Jarin, S., & Tomal, A. (2017). A review on recent advances of CNTs as gas sensors. Sensor Review, 37(2), 127-136. https://doi.org/10.1108/SR-10-2016-0230
  • [23] Toda, K., Furue, R., & Hayami, S. (2015). Recent progress in applications of graphene oxide for gas sensing: A review. Analytica Chimica Acta, 878, 43-53. https://doi.org/10.1016/j.aca.2015.02.002
  • [24] Zhang, C., Luo, Y., Xu, J., & Debliquy, M. (2019). Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sensors and Actuators A: Physical, 289, 118-133. https://doi.org/10.1016/j.sna.2019.02.027
  • [25] Simon, I., Bârsan, N., Bauer, M., & Weimar, U. (2001). Micromachined metal oxide gas sensors: Opportunities to improve sensor performance. Sensors and Actuators B: Chemical, 73(1), 1-26. https://doi.org/10.1016/S0925-4005(00)00639-0
  • [26] Staerz, A., Weimar, U., & Barsan, N. (2022). Current state of knowledge on the metal oxide based gas sensing mechanism. Sensors and Actuators B: Chemical, 358, 131531. https://doi.org/10.1016/j.snb.2022.131531
  • [27] Aleixandre, M., & Gerboles, M. (2012). Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans, 30. https://doi.org/10.3303/CET1230029
  • [28] Szafraniak, B., Fuśnik, Ł., Xu, J., Gao, F., Brudnik, A., & Rydosz, A. (2021). Semiconducting Metal Oxides: SrTiO3, BaTiO3 and BaSrTiO3 in Gas-Sensing Applications: A Review. Coatings, 11(2), 185. https://doi.org/10.3390/coatings11020185
  • [29] Xu, J., Liu, S., Wang, Y., Guo, Y., Zhao, J., Yan, H., & Gao, F. (2020). Enhanced dielectric properties of highly dense Ba0.5Sr0.5TiO3 ceramics via non-toxic gelcasting. Journal of Materials Science: Materials in Electronics, 31(20), 17819-17827. https://doi.org/10.1007/s10854-020-04336-0
  • [30] Liu, Y., Nagra, A.S., Erker, E.G., Periaswamy, P., Taylor, T.R., Speck, J., & York, R.A. (2000). BaSrTiO3 Interdigitated Capacitors for Distributed Phase Shifter Applications. IEEE Microwave and Guided Wave Letters, 10(11). https://doi.org/10.1109/75.888828
  • [31] Shen, Z.-Y., Wang, Y., Tang, Y., Yu, Y., Luo, W.-Q., Wang, X., Li, Y., Wang, Z., & Song, F. (2019). Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. Journal of Materiomics, 5(4), 641-648. https://doi.org/10.1016/j.jmat.2019.06.003
  • [32] Borderon, C., Nadaud, K., Coulibaly, M., Renoud, R., & Gundel, H. (2019). Mn-Doped Ba0.8 Sr0.2TiO3 Thin Films for Energy Storage Capacitors. International Journal of Advanced Research in Physical Science, 6(2), 2349-7882.
  • [33] Roy, S.C. (2004). Electrical optical and gas sensing properties of Bax Sr1-x TiO3 thin films prepared by sol-gel process. [Doctoral dissertation, Indian Institute of Technology Delhi].
  • [34] Stanoiu, A., Piticescu, R.M., Simion, C.E., Rusti-Ciobota, C.F., Florea, O.G., Teodorescu, V.S., Osiceanu, P., Sobetkii, A., & Badilita, V. (2018). H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism. Sensors and Actuators B: Chemical, 264, 327-336. https://doi.org/10.1016/j.snb.2018.03.013
  • [35] Roy, S.C., Sharma, G.L., Bhatnagar, M.C., & Samanta, S.B. (2005). Novel ammonia-sensing phenomena in sol-gel derived Ba0.5Sr0.5TiO3 thin films. Sensors and Actuators B: Chemical, 110(2), 299-303. https://doi.org/10.1016/j.snb.2005.02.030
  • [36] Patil, R.P., Gaikwad, S.S., Karanjekar, A.N., Khanna, P.K., Jain, G.H., Gaikwad, V.B., More, P.V., & Bisht, N. (2020). Optimization of strontium-doping concentration in BaTiO3 nanostructures for room temperature NH3 and NO2 gas sensing. Materials Today Chemistry, 16, 100240. https://doi.org/10.1016/j.mtchem.2019.100240
  • [37] Sharma, S., Sharma, A., Tomar, M., Puri, N.K., & Gupta, V. (2014). NOx Sensing Properties of Barium Titanate Thin Films. Procedia Engineering, 87, 1067-1070. https://doi.org/10.1016/j.proeng.2014.11.347
  • [38] BVT Technologie. (2024, September 9). CC2 Electrochemical sensor. https://bvt.cz/produkt/cc2/
  • [39] Rydosz, A., & Szkudlarek, A. (2015). Gas-sensing performance of M-doped CuO-based thin films working at different temperatures upon exposure to propane. Sensors, 15(8), 20069-20085. https://doi.org/10.3390/s150820069
  • [40] Liu, S., Guo, Y., Li, J., Wu, S., Xu, J., Pawlikowska, E., Kong, J., Rydosz, A.M., Szafran, M., & Gao, F. (2022). Microstructure and dielectric properties of (Ba0.6Sr0.4)TiO3/PEEK functional composites prepared via cold-pressing sintering. Composites Science and Technology, 219, 109228. https://doi.org/10.1016/j.compscitech.2021.109228
  • [41] Guo, Y., Liu, S., Wu, S., Xu, J., Pawlikowska, E., Bulejak, W., Szafran, M., Rydosz, A., & Gao, F. (2022). Enhanced tunable dielectric properties of Ba0.6Sr0.4TiO3/PVDF composites through dual-gradient structural engineering. Journal of Alloys and Compounds, 920, 166034. https://doi.org/10.1016/j.jallcom.2022.166034
  • [42] Guo, Y., Wu, S., Liu, S., Xu, J., Pawlikowska, E., Szafran, M., Rydosz, A., & Gao, F. (2022). Enhanced dielectric tunability and energy storage density of sandwich-structured Ba0.6Sr0.4TiO3/PVDF composites. Materials Letters, 306, 130910. https://doi.org/10.1016/j.matlet.2021.130910
  • [43] Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air - Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317-327. https://doi.org/10.1016/j.atmosenv.2015.08.057
  • [44] Tsiulyanu, D., Marian, S., Liess, H.-D., & Eisele, I. (2004). Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sensors and Actuators B: Chemical, 100(3), 380-386. https://doi.org/10.1016/j.snb.2004.02.005
  • [45] Chai, H., Zheng, Z., Liu, K., Xu, J., Wu, K., Luo, Y., Liao, H., Debliquy, M., & Zhang, C. (2022). Stability of Metal Oxide Semiconductor Gas Sensors: A Review. IEEE Sensors Journal, 22(6), 5470-5481. https://doi.org/10.1109/JSEN.2022.3148264
  • [46] Eranna, G., Joshi, B., Runthala, D., & Gupta, R. (2004). Oxide materials for development of integrated gas sensors - A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 29(3-4), 111-188.
  • [47] Wei, P., Ning, Z., Ye, S., Sun, L., Yang, F., Wong, K.C., Westerdahl, D., & Louie, P.K. (2018). Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors, 18(2), 59.
  • [48] Maier, K., Helwig, A., Müller, G., Hille, P., & Eickhoff, M. (2015). Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors. Materials, 8(9), 6570-6588. https://doi.org/10.3390/ma8095323
  • [49] Raju, P., & Li, Q. (2022). Review - Semiconductor Materials and Devices for Gas Sensors. Journal of the Electrochemical Society, 169(5), 057518. https://doi.org/10.1149/1945-7111/ac6e0a
  • [50] Herrmann, J.-M., Disdier, J., Fernandez, A., Jimenez, V., & Sanchez-Lopez, J. (1997). Oxygen gas sensing behavior of nanocrystalline tin oxide prepared by the gas phase condensation method. Nanostructured Materials, 8(6), 675-686. https://doi.org/10.1016/S0965-9773(97)00224-9
  • [51] Ghosh, A., Late, D.J., Panchakarla, L.S., Govindaraj, A., & Rao, C.N.R. (2009). NO2 and humidity sensing characteristics of few-layer graphenes. Journal of Experimental Nanoscience, 4(4), 313-322. https://doi.org/10.1080/17458080903115379
  • [52] Li, Q., Zeng, W., & Li, Y. (2022). Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors and Actuators B: Chemical, 359, 131579. https://doi.org/10.1016/j.snb.2022.131579
  • [53] Scribner. (2024, September 9). ZView®for Windows. https://www.scribner.com/software/68-generalelectrochemistr376-zview-for-windows/
  • [54] Yuzyuk, Y.I. (2012). Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: A review. Physics of the Solid State, 54, 1026-1059.
  • [55] Fang, P., He, M., Xie, Y., & Luo, M. (2006). XRD and Raman spectroscopic comparative study on phase transformation of gamma-Al2O3 at high temperature. Spectroscopy and Spectral Analysis, 26(11), 2039-2042. PMID:17260751
  • [56] Bulyarskii, S., Kozhevin, A., Mikov, S., & Prikhodko, V. (2000). Anomalous R-line behaviour in nanocrystalline Al2O3:Cr3+. Physica Status Solidi (a), 180(2), 555-560. https://doi.org/10.1002/1521-396X(200008)180:2%3C555:AID-PSSA555%3E3.0.CO;2-D
  • [57] Yuzyuk, Y.I., Sauvajol, J., Simon, P., Lorman, V., Alyoshin, V., Zakharchenko, I., & Sviridov, E. (2003). Phase transitions in (Ba0.7 Sr0.3)TiO3/(001)MgO thin film studied by Raman scattering. Journal of Applied Physics, 93(12), 9930-9937.
  • [58] Nitsch, K. (1999). Zastosowanie spektroskopii impedancyjnej w badaniach materiałów elektronicznych. Oficyna Wydawnicza Politechniki Wrocławskiej.
Uwagi
The work was financially supported by the National Science Centre Poland under grant NCN OPUS 2021/41/B/ST7/00276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6524947b-fb6a-4adf-9635-a277cddc2e0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.