Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Impedance spectroscopy is an appropriate technique for studying the complexity of materials, in which their different frequency relationships can be exploited in such a manner that they can be efficiently separated. Barium strontium titanate BaSrTiO3 (BST) is a ferroelectric material with unique properties that make it useful in a range of electronic applications. BST plays an important role in the field of gas-sensing applications. The potential application of BST material as a gas sensor for detecting nitrogen dioxide (NO2) in the atmosphere was studied. Impedance spectroscopy studies were conducted across a wide frequency range from 10-1 to 106 Hz, in the temperature range of 100˚C to 350˚C and a relative humidity of 50%, and both in air and the presence of NO2 in concentrations from 0.5 to 5 ppm. The results of the impedance analysis indicate that the broadband models, which comprise both single and parallel RC elements, can accurately represent the NO2 gas interaction mechanism with the gas-sensitive layer of the BST material. These models were found to effectively capture changes in parameters associated with the interaction.
Czasopismo
Rocznik
Tom
Strony
1--19
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
autor
- Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland
autor
- Department of Surface Engineering and Materials Characterization, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Institute of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Barsoukov, E., & Macdonald, J.R. (Red.). (2005). Impedance Spectroscopy: Theory, Experiment, and Applications (1. wyd.). Wiley. https://doi.org/10.1002/0471716243
- [2] Boukamp, B.A. (2004). Electrochemical impedance spectroscopy in solid state ionics: Recent advances. Solid State Ionics, 169(1-4), 65-73. https://doi.org/10.1016/j.ssi.2003.07.002
- [3] Irvine, J.T.S., Sinclair, D.C., & West, A.R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2(3), 132-138. https://doi.org/10.1002/adma.19900020304
- [4] K’Owino, I.O., & Sadik, O.A. (2005). Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 17(23), 2101-2113. https://doi.org/10.1002/elan.200503371
- [5] Dean, D., Ramanathan, T., Machado, D., & Sundararajan, R. (2008). Electrical impedance spectroscopy study of biological tissues. Journal of Electrostatics, 66(3-4), 165-177. https://doi.org/10.1016/j.elstat.2007.11.005
- [6] Randviir, E.P., & Banks, C.E. (2013). Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Analytical Methods, 5(5), 1098. https://doi.org/10.1039/c3ay26476a
- [7] Park, S.-M., & Yoo, J.-S. (2003). Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements. Analytical Chemistry, Vol 75, Issue 21, 455 A-461 A. https://doi.org/10.1021/ac0313973
- [8] Ciucci, F. (2019). Modeling electrochemical impedance spectroscopy. Current Opinion in Electrochemistry, 13, 132-139. https://doi.org/10.1016/j.coelec.2018.12.003
- [9] Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M.E. (2021). Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 1(1), 41. https://doi.org/10.1038/s43586-021-00039-w
- [10] Macdonald, J. (2005). Impedance spectroscopy: Models, data fitting, and analysis. Solid State Ionics, 176(25-28), 1961-1969. https://doi.org/10.1016/j.ssi.2004.05.035
- [11] Balasubramani, V. (2020). Review - Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides. Journal of the Electrochemical Society. https://doi.org/10.1149/1945-7111/ab77a0
- [12] Labidi, A., Jacolin, C., Bendahan, M., Abdelghani, A., Guerin, J., Aguir, K., & Maaref, M. (2005). Impedance spectroscopy on WO3 gas sensor. Sensors and Actuators B: Chemical, 106(2), 713-718. https://doi.org/10.1016/j.snb.2004.09.022
- [13] Paleczek, A., Szafraniak, B., Fuśnik, Ł., Brudnik, A., Grochala, D., Kluska, S., Jurzecka-Szymacha, M., Maciak, E., Kałużyński, P., & Rydosz, A. (2021). The Heterostructures of CuO and SnOx for NO2 Detection. Sensors, 21(13), 4387. https://doi.org/10.3390/s21134387
- [14] Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., & Morris, P.A. (2016). Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Reviews in Advanced Sciences and Engineering, 5(1), 86-105. https://doi.org/10.1166/rase.2016.1109
- [15] Szafraniak, B., Kusior, A., Radecka, M., & Zakrzewska, K. (2020). Impedance spectroscopy in H2 sensing with TiO2/SnO2 nanomaterials. Metrology and Measurement Systems, 27(3), 417-425. https://doi.org/10.24425/mms.2020.134588
- [16] Macdonald, D.D. (1990). Some advantages and pitfalls of electrochemical impedance spectroscopy. Corrosion, 46(3), 229-242.
- [17] Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., Morris, P.A., & Xu, J.C. (2017). Conduction mechanisms in SnO2 single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 241, 99-108. https://doi.org/10.1016/j.snb.2016.10.061
- [18] European Environment Agency. & European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM). (2018). Air quality in Europe: 2018 report. Publications Office. https://doi.org/10.2800/777411
- [19] World Health Organization. Regional Office for Europe. (2013). Health effects of particulate matter: Policy implications for countries in Eastern Europe, Caucasus and Central Asia. World Health Organization. Regional Office for Europe; WHO IRIS. https://apps.who.int/iris/handle/10665/344854
- [20] Choi, M.S., Na, H.G., Mirzaei, A., Bang, J.H., Oum, W., Han, S., Choi, S.-W., Kim, M., Jin, C., Kim, S.S., & Kim, H.W. (2019). Room-temperature NO2 sensor based on electrochemically etched porous silicon. Journal of Alloys and Compounds, 811, 151975. https://doi.org/10.1016/j.jallcom.2019.151975
- [21] Akbari, E., Jahanbin, K., Afroozeh, A., Yupapin, P., & Buntat, Z. (2018). Brief review of monolayer molybdenum disulfide application in gas sensor. Physica B: Condensed Matter, 545, 510-518. https://doi.org/10.1016/j.physb.2018.06.033
- [22] Rana, Md.M., Ibrahim, D.Sh., Mohd Asyraf, M.R., Jarin, S., & Tomal, A. (2017). A review on recent advances of CNTs as gas sensors. Sensor Review, 37(2), 127-136. https://doi.org/10.1108/SR-10-2016-0230
- [23] Toda, K., Furue, R., & Hayami, S. (2015). Recent progress in applications of graphene oxide for gas sensing: A review. Analytica Chimica Acta, 878, 43-53. https://doi.org/10.1016/j.aca.2015.02.002
- [24] Zhang, C., Luo, Y., Xu, J., & Debliquy, M. (2019). Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sensors and Actuators A: Physical, 289, 118-133. https://doi.org/10.1016/j.sna.2019.02.027
- [25] Simon, I., Bârsan, N., Bauer, M., & Weimar, U. (2001). Micromachined metal oxide gas sensors: Opportunities to improve sensor performance. Sensors and Actuators B: Chemical, 73(1), 1-26. https://doi.org/10.1016/S0925-4005(00)00639-0
- [26] Staerz, A., Weimar, U., & Barsan, N. (2022). Current state of knowledge on the metal oxide based gas sensing mechanism. Sensors and Actuators B: Chemical, 358, 131531. https://doi.org/10.1016/j.snb.2022.131531
- [27] Aleixandre, M., & Gerboles, M. (2012). Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans, 30. https://doi.org/10.3303/CET1230029
- [28] Szafraniak, B., Fuśnik, Ł., Xu, J., Gao, F., Brudnik, A., & Rydosz, A. (2021). Semiconducting Metal Oxides: SrTiO3, BaTiO3 and BaSrTiO3 in Gas-Sensing Applications: A Review. Coatings, 11(2), 185. https://doi.org/10.3390/coatings11020185
- [29] Xu, J., Liu, S., Wang, Y., Guo, Y., Zhao, J., Yan, H., & Gao, F. (2020). Enhanced dielectric properties of highly dense Ba0.5Sr0.5TiO3 ceramics via non-toxic gelcasting. Journal of Materials Science: Materials in Electronics, 31(20), 17819-17827. https://doi.org/10.1007/s10854-020-04336-0
- [30] Liu, Y., Nagra, A.S., Erker, E.G., Periaswamy, P., Taylor, T.R., Speck, J., & York, R.A. (2000). BaSrTiO3 Interdigitated Capacitors for Distributed Phase Shifter Applications. IEEE Microwave and Guided Wave Letters, 10(11). https://doi.org/10.1109/75.888828
- [31] Shen, Z.-Y., Wang, Y., Tang, Y., Yu, Y., Luo, W.-Q., Wang, X., Li, Y., Wang, Z., & Song, F. (2019). Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. Journal of Materiomics, 5(4), 641-648. https://doi.org/10.1016/j.jmat.2019.06.003
- [32] Borderon, C., Nadaud, K., Coulibaly, M., Renoud, R., & Gundel, H. (2019). Mn-Doped Ba0.8 Sr0.2TiO3 Thin Films for Energy Storage Capacitors. International Journal of Advanced Research in Physical Science, 6(2), 2349-7882.
- [33] Roy, S.C. (2004). Electrical optical and gas sensing properties of Bax Sr1-x TiO3 thin films prepared by sol-gel process. [Doctoral dissertation, Indian Institute of Technology Delhi].
- [34] Stanoiu, A., Piticescu, R.M., Simion, C.E., Rusti-Ciobota, C.F., Florea, O.G., Teodorescu, V.S., Osiceanu, P., Sobetkii, A., & Badilita, V. (2018). H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism. Sensors and Actuators B: Chemical, 264, 327-336. https://doi.org/10.1016/j.snb.2018.03.013
- [35] Roy, S.C., Sharma, G.L., Bhatnagar, M.C., & Samanta, S.B. (2005). Novel ammonia-sensing phenomena in sol-gel derived Ba0.5Sr0.5TiO3 thin films. Sensors and Actuators B: Chemical, 110(2), 299-303. https://doi.org/10.1016/j.snb.2005.02.030
- [36] Patil, R.P., Gaikwad, S.S., Karanjekar, A.N., Khanna, P.K., Jain, G.H., Gaikwad, V.B., More, P.V., & Bisht, N. (2020). Optimization of strontium-doping concentration in BaTiO3 nanostructures for room temperature NH3 and NO2 gas sensing. Materials Today Chemistry, 16, 100240. https://doi.org/10.1016/j.mtchem.2019.100240
- [37] Sharma, S., Sharma, A., Tomar, M., Puri, N.K., & Gupta, V. (2014). NOx Sensing Properties of Barium Titanate Thin Films. Procedia Engineering, 87, 1067-1070. https://doi.org/10.1016/j.proeng.2014.11.347
- [38] BVT Technologie. (2024, September 9). CC2 Electrochemical sensor. https://bvt.cz/produkt/cc2/
- [39] Rydosz, A., & Szkudlarek, A. (2015). Gas-sensing performance of M-doped CuO-based thin films working at different temperatures upon exposure to propane. Sensors, 15(8), 20069-20085. https://doi.org/10.3390/s150820069
- [40] Liu, S., Guo, Y., Li, J., Wu, S., Xu, J., Pawlikowska, E., Kong, J., Rydosz, A.M., Szafran, M., & Gao, F. (2022). Microstructure and dielectric properties of (Ba0.6Sr0.4)TiO3/PEEK functional composites prepared via cold-pressing sintering. Composites Science and Technology, 219, 109228. https://doi.org/10.1016/j.compscitech.2021.109228
- [41] Guo, Y., Liu, S., Wu, S., Xu, J., Pawlikowska, E., Bulejak, W., Szafran, M., Rydosz, A., & Gao, F. (2022). Enhanced tunable dielectric properties of Ba0.6Sr0.4TiO3/PVDF composites through dual-gradient structural engineering. Journal of Alloys and Compounds, 920, 166034. https://doi.org/10.1016/j.jallcom.2022.166034
- [42] Guo, Y., Wu, S., Liu, S., Xu, J., Pawlikowska, E., Szafran, M., Rydosz, A., & Gao, F. (2022). Enhanced dielectric tunability and energy storage density of sandwich-structured Ba0.6Sr0.4TiO3/PVDF composites. Materials Letters, 306, 130910. https://doi.org/10.1016/j.matlet.2021.130910
- [43] Grundström, M., Hak, C., Chen, D., Hallquist, M., & Pleijel, H. (2015). Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air - Relationships with wind speed, vertical temperature gradient and weather type. Atmospheric Environment, 120, 317-327. https://doi.org/10.1016/j.atmosenv.2015.08.057
- [44] Tsiulyanu, D., Marian, S., Liess, H.-D., & Eisele, I. (2004). Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sensors and Actuators B: Chemical, 100(3), 380-386. https://doi.org/10.1016/j.snb.2004.02.005
- [45] Chai, H., Zheng, Z., Liu, K., Xu, J., Wu, K., Luo, Y., Liao, H., Debliquy, M., & Zhang, C. (2022). Stability of Metal Oxide Semiconductor Gas Sensors: A Review. IEEE Sensors Journal, 22(6), 5470-5481. https://doi.org/10.1109/JSEN.2022.3148264
- [46] Eranna, G., Joshi, B., Runthala, D., & Gupta, R. (2004). Oxide materials for development of integrated gas sensors - A comprehensive review. Critical Reviews in Solid State and Materials Sciences, 29(3-4), 111-188.
- [47] Wei, P., Ning, Z., Ye, S., Sun, L., Yang, F., Wong, K.C., Westerdahl, D., & Louie, P.K. (2018). Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors, 18(2), 59.
- [48] Maier, K., Helwig, A., Müller, G., Hille, P., & Eickhoff, M. (2015). Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors. Materials, 8(9), 6570-6588. https://doi.org/10.3390/ma8095323
- [49] Raju, P., & Li, Q. (2022). Review - Semiconductor Materials and Devices for Gas Sensors. Journal of the Electrochemical Society, 169(5), 057518. https://doi.org/10.1149/1945-7111/ac6e0a
- [50] Herrmann, J.-M., Disdier, J., Fernandez, A., Jimenez, V., & Sanchez-Lopez, J. (1997). Oxygen gas sensing behavior of nanocrystalline tin oxide prepared by the gas phase condensation method. Nanostructured Materials, 8(6), 675-686. https://doi.org/10.1016/S0965-9773(97)00224-9
- [51] Ghosh, A., Late, D.J., Panchakarla, L.S., Govindaraj, A., & Rao, C.N.R. (2009). NO2 and humidity sensing characteristics of few-layer graphenes. Journal of Experimental Nanoscience, 4(4), 313-322. https://doi.org/10.1080/17458080903115379
- [52] Li, Q., Zeng, W., & Li, Y. (2022). Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors and Actuators B: Chemical, 359, 131579. https://doi.org/10.1016/j.snb.2022.131579
- [53] Scribner. (2024, September 9). ZView®for Windows. https://www.scribner.com/software/68-generalelectrochemistr376-zview-for-windows/
- [54] Yuzyuk, Y.I. (2012). Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: A review. Physics of the Solid State, 54, 1026-1059.
- [55] Fang, P., He, M., Xie, Y., & Luo, M. (2006). XRD and Raman spectroscopic comparative study on phase transformation of gamma-Al2O3 at high temperature. Spectroscopy and Spectral Analysis, 26(11), 2039-2042. PMID:17260751
- [56] Bulyarskii, S., Kozhevin, A., Mikov, S., & Prikhodko, V. (2000). Anomalous R-line behaviour in nanocrystalline Al2O3:Cr3+. Physica Status Solidi (a), 180(2), 555-560. https://doi.org/10.1002/1521-396X(200008)180:2%3C555:AID-PSSA555%3E3.0.CO;2-D
- [57] Yuzyuk, Y.I., Sauvajol, J., Simon, P., Lorman, V., Alyoshin, V., Zakharchenko, I., & Sviridov, E. (2003). Phase transitions in (Ba0.7 Sr0.3)TiO3/(001)MgO thin film studied by Raman scattering. Journal of Applied Physics, 93(12), 9930-9937.
- [58] Nitsch, K. (1999). Zastosowanie spektroskopii impedancyjnej w badaniach materiałów elektronicznych. Oficyna Wydawnicza Politechniki Wrocławskiej.
Uwagi
The work was financially supported by the National Science Centre Poland under grant NCN OPUS 2021/41/B/ST7/00276.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6524947b-fb6a-4adf-9635-a277cddc2e0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.