Identyfikatory
Warianty tytułu
Prognozowanie trwałości resztkowej wysoce niezawodnych produktów na podstawie danych historycznych z przyspieszonych badań degradacji
Języki publikacji
Abstrakty
To precisely predict the residual life for functioning products is a key of carrying out condition based maintenance. For highly reliable products, it is difficult to obtain abundant degradation data to precisely predict the residual life under normal stress levels. Thus, how to make use of historical degradation data to improve the accuracy of the residual life prediction is an interesting issue. Accelerated degradation testing, which has been widely used to evaluate the reliability of highly reliable products, can provide abundant accelerated degradation data. In this paper, a residual life prediction method based on Bayesian inference that takes accelerated degradation data as prior information was studied. A Wiener process with a time function was used to model degradation data. In order to apply the random effects of all the parameters of a Wiener process, the non-conjugate prior distributions were considered. Acceleration factors were introduced to convert the parameter estimates from accelerated stress levels to normal stress levels, so that the proper prior distribution types of the random parameters can be selected by the Anderson-Darling statistic. A Markov Chain Monte Carlo method with Gibbs sampling was used to evaluate the posterior means of the random parameters. An illustrative example of self-regulating heating cable was utilized to validate the proposed method.
Precyzyjne przewidywanie trwałości resztkowej użytkowanego produktu stanowi klucz do prawidłowego utrzymania ruchu w oparciu o bieżący stan techniczny (condition-based maintenance).W przypadku produktów o wysokiej niezawodności, trudno jest uzyskać ilość danych degradacyjnych, która umożliwiałaby precyzyjne prognozowanie trwałości resztkowej przy normalnym poziomie obciążeń. Dlatego też bardzo ważnym zagadnieniem jest wykorzystanie historycznych danych degradacyjnych umożliwiających zwiększenie trafności prognozowania trwałości resztkowej. Przyspieszone badania degradacyjne, które powszechnie wykorzystuje się do oceny niezawodności wysoce niezawodnych produktów, mogą dostarczać bogatych danych o przyspieszonej degradacji. W przedstawionej pracy badano metodę prognozowania trwałości resztkowej opartą na wnioskowaniu bayesowskim, w którym jako uprzednie informacje wykorzystano dane z przyspieszonych badań degradacji. Dane degradacyjne modelowano za pomocą procesu Wienera z funkcją czasu. Aby móc zastosować efekty losowe wszystkich parametrów procesu Wienera, rozważano niesprzężone rozkłady a priori. Wprowadzono współczynniki przyspieszenia , które pozwoliły na przekształcenie szacowanych wartości parametrów z poziomu obciążeństosowanych w próbie przyspieszonej do poziomu obciążeń normalnych, co umożliwiło wybór odpowiednich typów parametrów losowych rozkładu a priori zwykorzystaniem statystyki testowej Andersona-Darlinga. Metodę Monte Carlo opartą na łańcuchach Markowa z próbnikiem Gibbsa wykorzystano do oceny średnich a posteriori parametrów losowych. Proponowaną metodę zweryfikowano na postawie przykładu samoregulującego przewodu grzejnego.
Czasopismo
Rocznik
Tom
Strony
379--389
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Naval Aeronautical and Astronautical University The second road, 188 Yantai, China
autor
- Naval Aeronautical and Astronautical University The second road, 188 Yantai, China
Bibliografia
- 1. Baraldi P, Mangili F, Zio E. A prognostics approach to nuclear component degradation modeling based on Gaussian process regression. Progress in Nuclear Energy 2015; 78: 141-154, http://dx.doi.org/10.1016/j.pnucene.2014.08.006.
- 2. Chakraborty S, Gebraeel N, Lawley M, et al. Residual-life estimation for components with non-symmetric priors. IIE Transactions 2009; 41(4): 372-387, http://dx.doi.org/10.1080/07408170802369409.
- 3. Chiachio J, Chiachio M, Saxena A, et al. Bayesian model selection and parameter estimation for fatigue damage progression models in composites. International Journal of Fatigue 2015; 70: 361-373, http://dx.doi.org/10.1016/j.ijfatigue.2014.08.003.
- 4. Huang Z Y, Xu Z G, Wang W H, et al. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift. IEEE Transactions on Reliability 2015; 64(2): 687-700, http://dx.doi.org/10.1109/TR.2015.2403433.
- 5. Gebraeel N, Elwany A Pan J. Residual life predictions in the absence of prior degradation knowledge. IEEE Transactions on Reliability 2009; 58(1): 106-117, http://dx.doi.org/10.1109/TR.2008.2011659.
- 6. Gebraeel N, Lawley M A, Li R, et al. Residual-life distributions from component degradation signals: a Bayesian approach. IIE Transactions 200; 37(6): 543-557.
- 7. Guida M, Penta F. A Bayesian analysis of fatigue data. Structural Safety 2010; 32:64-76, http://dx.doi.org/10.1016/j.strusafe.2009.08.001.
- 8. Jiang X M, Yuan Y, Liu X. Bayesian inference method for stochastic damage accumulation modeling. Reliability Engineering & System Safety 2013; 111:126-38, http://dx.doi.org/10.1016/j.ress.2012.11.006.
- 9. Jin G, Matthews D E, Zhou Z. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft. Reliability Engineering & System Safety 2013;113:7-20, http://dx.doi.org/10.1016/j.ress.2012.12.011.
- 10. Karandikar J M, Kim N H, Schmitz T L. Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference. Engineering Fracture Mechanics 2012; 96:588-605, http://dx.doi.org/10.1016/j.engfracmech.2012.09.013.
- 11. Liao C M, Tseng S T. Optimal design for step-stress accelerated degradation tests. IEEE Transactions on Reliability 2006; 55: 59-66, http://dx.doi.org/10.1109/TR.2005.863811.
- 12. Liao H, Elsayed E A. Reliability inference for field conditions from accelerated degradation testing. Naval Research Logistics 2006; 53(6): 576-587, http://dx.doi.org/10.1002/nav.20163.
- 13. Ling M H, Tsui K L, Balakrishnan N. Accelerated degradation analysis for the quality of a system based on the Gamma process. IEEE Transactions on Reliability 2015; 64(1): 463-472, http://dx.doi.org/10.1109/TR.2014.2337071.
- 14. Lim H, Yum B J. Optimal design of accelerated degradation tests based on wiener process model. Journal of Applied Statistics 2011; 38:309-325, http://dx.doi.org/10.1080/02664760903406488.
- 15. Meeker W Q, Escobar L A. Accelerated degradation tests: modeling and analysis. Technometrics 1998; 40(2): 89-99, http://dx.doi.org/10.1080/00401706.1998.10485191.
- 16. Ntzoufras I. Bayesian Modeling Using WinBUGS: John Wiley & Sons; 2009, http://dx.doi.org/10.1002/9780470434567.
- 17. Padgett W J, Tomlinson M A. Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Analysis 2004; 10:191-206, http://dx.doi.org/10.1023/B:LIDA.0000030203.49001.b6.
- 18. Park C, Padgett W J. Stochastic Degradation Models With Several Accelerating Variables. IEEE Transactions on Reliability 2006; 55: 379-390, http://dx.doi.org/10.1109/TR.2006.874937.
- 19. Peng C Y, Tseng S T. Statistical lifetime inference with Skew-Wiener linear degradation models. IEEE Transactions on Reliability. 2013, 62(2); 338-350, http://dx.doi.org/10.1109/TR.2013.2257055.
- 20. Rigat F, Mira A. Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm. Computational Statistics & Data Analysis 2012; 56:1450-67, http://dx.doi.org/10.1016/j.csda.2011.11.020.
- 21. Santini T, Morand S, Fouladirad M, et al. Accelerated degradation data of SiC MOSFETs for lifetime and remaining useful life assessment. Microelectronics Reliability 2014; 54: 1718-1723, http://dx.doi.org/10.1016/j.microrel.2014.07.082.
- 22. Si X S, Wang W B, Hu C H, et al. Remaining useful life estimation - a review on the statistical data driven approaches. European Journal of Operational Research 2011; 213:1-14, http://dx.doi.org/10.1016/j.ejor.2010.11.018.
- 23. Si, X S, Wang W B, Hu C H, et al. Estimating remaining useful life with three-source variability in degradation modeling. IEEE Transactions on Reliability 2014; 63(1): 167-190, http://dx.doi.org/10.1109/TR.2014.2299151.
- 24. Thas O, Ottoy J P. Some generalizations of the Anderson-Darling statistic. Statistics & Probability Letters 2003; 64:255-61, http://dx.doi.org/10.1016/S0167-7152(03)00169-X.
- 25. Wang L, Pan R, Li X, Jiang T. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information. Reliability Engineering & System Safety 2013; 112:38-47, http://dx.doi.org/10.1016/j.ress.2012.09.015.
- 26. Wang H W, Xu T X, Mi Q L. Lifetime prediction based on Gamma processes from accelerated degradation data. Chinese Journal of Aeronautics 2015; 28(1): 172-179, http://dx.doi.org/10.1016/j.cja.2014.12.015.
- 27. Wang H W, Xu T X, Wang W Y. Remaining life prediction based on Wiener processes with ADT prior information. Quality and Reliability Engineering, http://dx.doi.org/10.1002/qre.1788.
- 28. Wang H W, Xu T X, Zhao J Z. Residual Life prediction method of fusing accelerated degradation and field degradation data. Acta Aeronautica et Astronautica Sinica 2014; 35(12):3350-3357.
- 29. Wang X. Wiener processes with random effects for degradation data. Journal of Multivariate Analysis 2010; 101:340-51, http://dx.doi.org/10.1016/j.jmva.2008.12.007.
- 30. Wang X L, Balakrishnan N, Guo B. Residual life estimation based on a generalized Wiener degradation process. Reliability Engineering and System Safety 2014; 124: 13-23, http://dx.doi.org/10.1016/j.ress.2013.11.011.
- 31. Whitmore G A, Schenkelberg F. Modelling Accelerated Degradation Data Using Wiener Diffusion With A Time Scale Transformation. Lifetime Data Anal 1997; 3:27-45, http://dx.doi.org/10.1023/A:1009664101413.
- 32. Yang Z, Chen Y X, Li Y F, et al. Smart electricity meter reliability prediction based on accelerated degradation testing and modeling. Electrical Power and Energy Systems 2014; 56: 209-219, http://dx.doi.org/10.1016/j.ijepes.2013.11.023.
- 33. Ye Z S, Chen L P, Tang L C, et al. Accelerated degradation test planning using inverse Gaussian process. IEEE Transactions on Reliability 2014; 63(3): 750-763, http://dx.doi.org/10.1109/TR.2014.2315773.
- 34. Zaidan M A, Harrison R F, Mills A R, et al. Bayesian hierarchical models for aerospace gas turbine engine prognostics. Expert Systems with Applications 2015; 42:539-553, http://dx.doi.org/10.1016/j.eswa.2014.08.007.
- 35. Zhou Y Q, Weng C X, Ye X T. Study on Accelerated factor and condition for constant failure mechanism. Systems Engineering and Electronics 996; 18: 55-67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-652392f0-d8ec-44bd-9c6b-7fca79cec3b0