Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a positive integer m and a finite non-negative Borel measure μ on the unit circle, we study the Hadamard multipliers of higher order weighted Dirichlet-type spaces Hμ,m. We show that if [formula], then for any f in Hμ,m, the sequence of generalized Cesàro sums [formula] converges to f. We further show that if [formula] then for the Dirac delta measure supported at any point on the unit circle, the previous statement breaks down for every positive integer m.
Czasopismo
Rocznik
Tom
Strony
373--390
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics, Indian Institute of Technology Kharagpur, Midnapore - 721302, India
autor
- School of Mathematics and Computer Science, Indian Institute of Technology Goa, Goa - 403401, India
autor
- School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala - 695551, India
Bibliografia
- [1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55, 1964.
- [2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, I, Integral Equations Operator Theory 21 (1995), no. 4, 383–429.
- [3] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, II, Integral Equations Operator Theory 23 (1995), no. 1, 1–48.
- [4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, III, Integral Equations Operator Theory 24 (1996), no. 4, 379–421.
- [5] J.B. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, 1991.
- [6] R. Curto, N. Salinas, Generalized Bergman kernels and the Cowen–Douglas theory, Amer. J. Math. 106 (1984), 447–488.
- [7] D. DeTemple, W. Webb, Combinatorial Reasoning: An Introduction to the Art of Counting, John Wiley & Sons, 2014.
- [8] O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A Primer on the Dirichlet Space, Cambridge University Press, vol. 203, 2014.
- [9] S. Ghara, R. Gupta, Md.R. Reza, Analytic m-isometries and weighted Dirichlet-type spaces, J. Operator Theory 88 (2022), no. 2, 445–477.
- [10] S. Ghara, R. Gupta, Md.R. Reza, A local Douglas formula for higher order weighted Dirichlet-type integrals, J. Geom. Anal. 33 (2023), Article no. 23.
- [11] S. Ghara, J. Mashreghi, T. Ransford, Summability and duality, Publ. Mat. (to appear), arXiv:2302.06720 (2023).
- [12] G.H. Hardy, Divergent Series, American Mathematical Society, 2000.
- [13] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge University Press, 2004.
- [14] S. Luo, E. Rydhe, On Dirichlet-type and m-isometric shifts in finite rank de Branges–Rovnyak spaces, arXiv:2310.193932023 (2023).
- [15] J. Mashreghi, T. Ransford, Hadamard multipliers on weighted Dirichlet spaces, Integral Equations Operator Theory 91 (2019), Article no. 52.
- [16] J. Mashreghi, T. Ransford, Polynomial approximation in weighted Dirichlet spaces, Complex Anal. Synerg. 7 (2021), Article no. 11.
- [17] J. Mashreghi, P.-O. Parisè, T. Ransford, Cesàro summability of Taylor series in weighted Dirichlet spaces, Complex Anal. Oper. Theory 15 (2021), Article no. 7.
- [18] J. Mashreghi, P.-O. Parisè, T. Ransford, Power-series summability methods in de Branges–Rovnyak spaces, Integral Equations Operator Theory 94 (2022), no. 2, 1–17.
- [19] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), 325–349.
- [20] E. Rydhe, Cyclic m-isometries and Dirichlet type spaces, J. Lond. Math. Soc. 99 (2019), no. 3, 733–756.
- [21] G.D. Taylor, Multipliers on Dα, Trans. Amer. Math. Soc. 123 (1966), 229–240.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-651e437b-6986-4c44-af5a-52788280ae69