PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cesàro summability of Taylor series in higher order weighted Dirichlet-type spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a positive integer m and a finite non-negative Borel measure μ on the unit circle, we study the Hadamard multipliers of higher order weighted Dirichlet-type spaces Hμ,m. We show that if [formula], then for any f in Hμ,m, the sequence of generalized Cesàro sums [formula] converges to f. We further show that if [formula] then for the Dirac delta measure supported at any point on the unit circle, the previous statement breaks down for every positive integer m.
Rocznik
Strony
373--390
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Department of Mathematics, Indian Institute of Technology Kharagpur, Midnapore - 721302, India
autor
  • School of Mathematics and Computer Science, Indian Institute of Technology Goa, Goa - 403401, India
  • School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala - 695551, India
Bibliografia
  • [1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55, 1964.
  • [2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, I, Integral Equations Operator Theory 21 (1995), no. 4, 383–429.
  • [3] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, II, Integral Equations Operator Theory 23 (1995), no. 1, 1–48.
  • [4] J. Agler, M. Stankus, m-isometric transformations of Hilbert space, III, Integral Equations Operator Theory 24 (1996), no. 4, 379–421.
  • [5] J.B. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, 1991.
  • [6] R. Curto, N. Salinas, Generalized Bergman kernels and the Cowen–Douglas theory, Amer. J. Math. 106 (1984), 447–488.
  • [7] D. DeTemple, W. Webb, Combinatorial Reasoning: An Introduction to the Art of Counting, John Wiley & Sons, 2014.
  • [8] O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A Primer on the Dirichlet Space, Cambridge University Press, vol. 203, 2014.
  • [9] S. Ghara, R. Gupta, Md.R. Reza, Analytic m-isometries and weighted Dirichlet-type spaces, J. Operator Theory 88 (2022), no. 2, 445–477.
  • [10] S. Ghara, R. Gupta, Md.R. Reza, A local Douglas formula for higher order weighted Dirichlet-type integrals, J. Geom. Anal. 33 (2023), Article no. 23.
  • [11] S. Ghara, J. Mashreghi, T. Ransford, Summability and duality, Publ. Mat. (to appear), arXiv:2302.06720 (2023).
  • [12] G.H. Hardy, Divergent Series, American Mathematical Society, 2000.
  • [13] Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge University Press, 2004.
  • [14] S. Luo, E. Rydhe, On Dirichlet-type and m-isometric shifts in finite rank de Branges–Rovnyak spaces, arXiv:2310.193932023 (2023).
  • [15] J. Mashreghi, T. Ransford, Hadamard multipliers on weighted Dirichlet spaces, Integral Equations Operator Theory 91 (2019), Article no. 52.
  • [16] J. Mashreghi, T. Ransford, Polynomial approximation in weighted Dirichlet spaces, Complex Anal. Synerg. 7 (2021), Article no. 11.
  • [17] J. Mashreghi, P.-O. Parisè, T. Ransford, Cesàro summability of Taylor series in weighted Dirichlet spaces, Complex Anal. Oper. Theory 15 (2021), Article no. 7.
  • [18] J. Mashreghi, P.-O. Parisè, T. Ransford, Power-series summability methods in de Branges–Rovnyak spaces, Integral Equations Operator Theory 94 (2022), no. 2, 1–17.
  • [19] S. Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), 325–349.
  • [20] E. Rydhe, Cyclic m-isometries and Dirichlet type spaces, J. Lond. Math. Soc. 99 (2019), no. 3, 733–756.
  • [21] G.D. Taylor, Multipliers on Dα, Trans. Amer. Math. Soc. 123 (1966), 229–240.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-651e437b-6986-4c44-af5a-52788280ae69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.