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Abstract. For a positive integer m and a finite non-negative Borel measure µ on the unit
circle, we study the Hadamard multipliers of higher order weighted Dirichlet-type spaces Hµ,m.
We show that if α > 1

2 , then for any f in Hµ,m, the sequence of generalized Cesàro sums
{σα

n [f ]} converges to f . We further show that if α = 1
2 then for the Dirac delta measure

supported at any point on the unit circle, the previous statement breaks down for every
positive integer m.
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1. INTRODUCTION

The symbols T and D will denote the unit circle and the open unit disc in the complex
plane C respectively. We use the symbols Z,N and Z⩾0 to denote the set of integers,
positive integers and non-negative integers respectively. The notation M+(T) stands
for the set of all finite non-negative Borel measures on T. Let O(D) denote the space of
all complex valued holomorphic functions on D. For a holomorphic function f ∈ O(D),
which has a power series representation of the form f(z) =

∑∞
k=0 akzk, z ∈ D, the nth

Taylor partial sum sn[f ] and the nth Cesàro sum σn[f ] are defined by

sn[f ](z) :=
n∑

k=0
akzk,

σn[f ](z) := 1
n + 1

( n∑

k=0
sk[f ](z)

)
=

n∑

k=0

(
1 − k

n + 1

)
akzk, n ∈ Z⩾0.
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When exploring analytic function spaces, a common concern revolves around
determining the density of the polynomial set within the given function space. Once
the density of polynomials is established, the next natural question to address is
how to construct polynomials that can closely approximate a given function. In this
context, it becomes natural to inquire whether, for a function f residing in a normed
function space, the sequence of Taylor partial sum {sn[f ]} converge to f in the norm
associated with that space. It is worth noting that in several classical function spaces
like Hardy space, Dirichlet space, and Bergman space defined over the unit disc D,
it is well-established that the sequence {sn[f ]} indeed converges to f as prescribed
by the associated norm. However, it is worth noting that there are instances where
this convergence property does not hold. For example, it is well known that there
exists a function f in the disc algebra A(D) such that the sequence {sn[f ]} does not
converge to f, see [13, p. 57]. Another notable family of examples in the context
of Hilbert function spaces is the family of weighted Dirichlet-type spaces. Richter
introduced the weighted Dirichlet space D(µ) for each µ ∈ M+(T) in order to study
the structure of closed Mz-invariant subspaces of the classical Dirichlet space on D and
to obtain a model for cyclic analytic 2-isometries, see [19]. Interestingly, when µ = δλ,
the Dirac delta measure at a point λ ∈ T, it has been established that there exists
a function f in D(δλ) for which the sequence {sn[f ]} does not converge to f within
the space D(δλ), see [8, Exercise 7.3 (2)]. On the contrary, a remarkable discovery
surfaced when Mashreghi and Ransford recently showed that for any arbitrary, but
fixed, µ ∈ M+(T), the sequence of Cesàro sums {σn[f ]} converges to f for every f
in the space D(µ) (refer to [15, Theorem 1.6] and [16, Corollary 1]). Furthermore,
they refined their result by establishing that the sequence of generalized Cesàro sums
{σα

n [f ]} also converge to f for every f in D(µ) and for each µ ∈ M+(T) whenever
α > 1/2, see [17, Theorem 1.1]. For each n ∈ Z⩾0, the generalized nth-Cesàro mean
σα

n [f ] is defined by

σα
n [f ](z) =

(
n + α

α

)−1 n∑

k=0

(
n − k + α

α

)
akzk, α ⩾ 0,

where the binomial coefficient
(

m+α
α

)
is given the following interpretation:

(
m + α

α

)
= Γ(m + α + 1)

Γ(α + 1)Γ(m + 1) ,

with Γ denoting the usual gamma function. Note that the generalized nth-Cesàro
mean σα

n [f ] corresponds to the nth-partial sum sn[f ] when α = 0 and corresponds
to the nth-Cesàro sum σn[f ] when α = 1. For α ⩾ 0, the Taylor series of a function
f is said to be (C, α)-summable to f if the sequence {σα

n [f ]} converges to f in the
associated normed function space. It is well known that (C, α)-summability implies
(C, β)-summability if α ⩽ β, see [12, Theorem 43]. It is worth mentioning that there
is a de Branges-Rovnyak space H(b) with the property that the set of polynomials is
dense in H(b) but there is a function f in H(b) such that the sequence of generalized
Cesàro sum does not converge to f in H(b) for any α ⩾ 0, see [18], [11, Corollary 6.14].
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In this article, our primary objective is to investigate whether the sequence of
generalized Cesàro means {σα

n [f ]} converges to the corresponding function f that
belongs to the higher order weighted Dirichlet space Hµ,m as defined below. These
spaces serve as a crucial framework for modeling a specific sub-class within the broader
category of m-isometries. The motivation behind introducing these spaces is rooted in
Agler’s exploration of m-isometries see [2–4]. In order to find a suitable model for cyclic
m-isometries, Rydhe delved into the study of higher order weighted Dirichlet-type
spaces, see [20]. Following Rydhe’s framework, we consider, for a measure µ in M+(T),
f ∈ O(D) and for a positive integer m, the concept of weighted Dirichlet-type integral
of f of order m, Dµ,m(f), defined by

Dµ,m(f) := 1
m!(m − 1)!

∫

D

∣∣f (m)(z)
∣∣2

Pµ(z)(1 − |z|2)m−1dA(z).

Here dA(z) denotes the normalized Lebesgue measure on the unit disc D, f (m)(z) rep-
resents the mth-order derivative of f at z, and Pµ(z) is the Poisson integral of the
measure µ, that is,

Pµ(z) :=
∫

T

1 − |z|2
|z − ζ|2 dµ(ζ), z ∈ D.

When dealing with Dirac delta measure δλ, representing a point measure at λ ∈ T, we
adopt a simpler notation Dλ,m(·) in place of Dδλ,m(·). For a measure µ ∈ M+(T)/{0}
and for each m ∈ N, we consider the semi-inner product space Hµ,m given by

Hµ,m :=
{

f ∈ O(D) : Dµ,m(f) < ∞
}

,

associated to the semi-norm
√

Dµ,m(·). In case µ is δλ for some λ ∈ T, we will use
a simpler notation Hλ,m in place of Hδλ,m and we refer it as a local Dirichlet space
of order m at λ. If µ = 0, we set Hµ,m = H2, Hardy space on D, for every m ∈ N.
If µ = σ, the normalized Lebesgue measure on T, by a straightforward computation,
it follows that for a holomorphic function f =

∑∞
k=0 akzk in O(D), we have

Dσ,m(f) =
∞∑

k=m

(
k

m

)
|ak|2, m ∈ Z⩾0, (1.1)

where
(

k
m

)
:= k!

m!(k−m)! for any k ⩾ m. Using this, it can be easily verified that Hσ,m

coincides with the space Dm, studied in [21], where

Dm =
{ ∞∑

k=0
akzk :

∞∑

k=0
|ak|2(k + 1)m < ∞

}
.

The reader is referred to [9, 10, 14, 20] for several properties of the spaces Hµ,m for
an arbitrary non-negative measure µ and a positive integer m. Note that when m = 1,
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the weighted Dirichlet-type space Hµ,1 coincides with the weighted Dirichlet-type
space D(µ) as introduced by Richter [19]. Theorems 1.1 and 1.3 are the main results of
this article. These results in the case of m = 1 are well known, see [17, Theorem 1.1],
see also [15, Theorem 1.6] for the special case of m = 1 and α = 1.

Theorem 1.1. Let µ ∈ M+(T) and m ∈ N. If α > 1
2 then there exists a constant

κ > 0 such that

Dµ,m(σα
n [f ]) ⩽ κDµ,m(f), n ∈ N, f ∈ Hµ,m.

Moreover, in this case, for every f ∈ Hµ,m, Dµ,m

(
σα

n [f ] − f
)

→ 0 as n → ∞.

It is known that the space Hµ,m is contained in the Hardy space H2 (see
[9, Corollary 2.5]). This allows us to define a norm ∥ · ∥µ,m on Hµ,m given by

∥f∥2
µ,m = ∥f∥2

H2 + Dµ,m(f), f ∈ Hµ,m,

where ∥f∥H2 denotes the norm of f in H2. As a consequence of Theorem 1.1, we obtain
the following corollary.

Corollary 1.2. Let µ ∈ M+(T) and m ∈ N. If α > 1
2 , then ∥σα

n [f ] − f∥µ,m → 0
as n → ∞ for any f ∈ Hµ,m.

Continuing our investigation into the convergence behavior of the sequence of
generalized Cesàro means {σα

n [f ]} to the respective function f when α ⩽ 1
2 within the

higher order weighted Dirichlet-type space Hµ,m, we bring attention to the following
theorem.

Theorem 1.3. Let m ∈ N and λ ∈ T and α = 1
2 . There exists a function f ∈ Hλ,m

such that Dλ,m

(
σα

n [f ] − f
)
↛ 0 as n → ∞.

We will use the techniques of the Hadamard multiplication operators of Hµ,1 as
developed in [15], in order to prove our results. In Section 2, first we extend the theory
of Hadamard multiplication operators of Hµ,1 to higher order weighted Dirichlet-type
spaces Hµ,m and then we proceed to establish the main results.

2. HADAMARD MULTIPLICATION OPERATORS ON Hµ,m

For two formal power series f(z) =
∑∞

j=0 ajzj and g(z) =
∑∞

j=0 bjzj , the Hadamard
product f ∗ g of f and g is defined by a formal power series, given by the formula

(f ∗ g)(z) :=
∞∑

j=0
ajbjzj .

In view of the Cauchy–Hadamard formula for the radius of convergence of a power series,
it is straightforward to verify that f ∗ g is in O(D) whenever f and g belong to O(D).
For µ ∈ M+(T) and m ∈ N, a function c ∈ O(D) is said to be a Hadamard multiplier
of Hµ,m if (c ∗ f) ∈ Hµ,m for every f ∈ Hµ,m. Proposition 2.2 below characterizes
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the Hadamard multiplier of Hµ,m. Before we state and prove Proposition 2.2, for
µ ∈ M+(T) \ {0}, we introduce a linear space denoted as Ĥµ,m, associated to the
linear space Hµ,m, for the sake of simplicity.

Ĥµ,m :=
{

f ∈ O(D) : f(z) =
∞∑

j=m

ajzj , aj ∈ C, Dµ,m(f) < ∞
}

. (2.1)

When µ = 0, we define Ĥµ,m to be the Hardy space H2. For a non-zero µ in M+(T),
since

√
Dµ,m(·) is a semi-norm on the linear space Hµ,m and Dµ,m(f) = 0 if and

only if f is a polynomial of degree at most (m − 1), it follows that
√

Dµ,m(·) induces
a norm on Ĥµ,m. It is straightforward to verify that Ĥµ,m turns out to be a Hilbert
space with respect to this norm. Furthermore, as established in the following lemma,
Ĥµ,m is a reproducing kernel Hilbert space on D.

Lemma 2.1. Let µ ∈ M+(T) \ {0} and m ∈ N. The linear space Ĥµ,m, equipped with
the norm

√
Dµ,m(·), is a reproducing kernel Hilbert space on D.

Proof. Let f ∈ Ĥµ,m and f(z) =
∑∞

j=m ajzj , z ∈ D. Then we have

f (m)(z) =
∞∑

j=m

Γ(j + 1)
Γ(j − m + 1)ajzj−m, z ∈ D.

In view of [9, Eq (2.6), p. 454], we obtain that

Dµ,m(f) ⩾ µ(T)
4m!(m − 1)!

∫

D

|f (m)|2(z)(1 − |z|2)mdA(z)

= µ(T)
4m!(m − 1)!

∞∑

j=m

|aj |2 (Γ(j + 1))2

(Γ(j − m + 1))2

∫

D

|z|2(j−m)(1 − |z|2)mdA(z)

= µ(T)
4m!(m − 1)!

∞∑

j=m

|aj |2 (Γ(j + 1))2

(Γ(j − m + 1))2
Γ(m + 1)Γ(j − m + 1)

Γ(j + 2)

= µ(T)
4(m − 1)!

∞∑

j=m

|aj |2
(j + 1)

Γ(j + 1)
Γ(j − m + 1) .

Using Cauchy–Schwarz inequality, we have for each w ∈ D,

|f(w)|2 =
∣∣∣

∞∑

j=m

ajwj
∣∣∣
2

⩽
( ∞∑

j=m

|aj |2
(j + 1)

Γ(j + 1)
Γ(j − m + 1)

)( ∞∑

j=m

(j + 1)Γ(j − m + 1)
Γ(j + 1) |w|2j

)

= 4(m − 1)!
µ(T)

( ∞∑

j=m

(j + 1)Γ(j − m + 1)
Γ(j + 1) |w|2j

)
Dµ,m(f).
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This shows that the evaluation at each point w ∈ D is a bounded linear functional
on Ĥµ,m and hence Ĥµ,m is a reproducing kernel Hilbert space on D. This completes
the proof.

Now we establish the result that gives a characterization of the Hadamard multiplier
of Hµ,m.

Proposition 2.2. Let µ ∈ M+(T) and m ∈ N. A function c ∈ O(D) is a Hadamard
multiplier of Hµ,m if and only if there exists a constant κ > 0 such that

Dµ,m(c ∗ f) ⩽ κDµ,m(f), for all f ∈ Hµ,m.

Proof. Suppose that a function c ∈ O(D) is a Hadamard multiplier of Hµ,m.

Thus (c ∗ f) ∈ Ĥµ,m for every f ∈ Ĥµ,m. Consider the linear transformation
Hc : Ĥµ,m → Ĥµ,m given by Hc(f) = c ∗ f, for f ∈ Ĥµ,m. Since, by Lemma 2.1,
Ĥµ,m is a reproducing kernel Hilbert space consisting of analytic functions on D,
it follows that the linear functional Lj : f → f(j)(0)

j! on Ĥµ,m is continuous for every
j ⩾ m (see [6, Lemma 4.1]). This gives us that the graph of Hc is closed, and hence by
closed graph theorem, Hc is bounded. That is, Dµ,m(c ∗ f) ⩽ ∥Hc∥Dµ,m(f) for every
f ∈ Ĥµ,m. For an arbitrary f ∈ Hµ,m, we write

f = p + g,

where p is a polynomial of degree at most m − 1 and g ∈ Ĥµ,m. Hence we obtain

Dµ,m(c ∗ f) = Dµ,m(c ∗ g) ⩽ ∥Hc∥Dµ,m(g) = ∥Hc∥Dµ,m(f).

The converse part is trivial.

For any c(z) =
∑∞

j=0 cjzj in O(D) and for any m ∈ N, we consider the infinite
matrix Tc(m) defined by

Tc(m) :=




cm cm+1 − cm cm+2 − cm+1 cm+3 − cm+2 · · ·
0 cm+1 cm+2 − cm+1 cm+3 − cm+2 · · ·
0 0 cm+2 cm+3 − cm+2 · · ·
0 0 0 cm+3 · · ·
...

...
...

... . . .




.

Let Wm be the linear space in O(D) given by Wm = span{zj : j ⩾ m − 1}. The matrix
Tc(m) induces a linear transformation Ac(m) on the linear space Wm, given by

Ac(m)
( n∑

j=m−1
bjzj

)
:=

n∑

j=m−1

(
cj+1bj +

n∑

k=j+1
(ck+1 − ck)bk

)
zj .

Let σ be the normalized Lebesgue measure on T. Consider the Hilbert space Ĥσ,m−1
associated with the norm

√
Dσ,m−1(·), as defined in (2.1). Suppose Ac(m) induces
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a bounded operator on the Hilbert space Ĥσ,m−1. As {zj : j ⩾ m− 1} is an orthogonal
basis for Ĥσ,m−1 with Dσ,m−1(zj) =

(
j

m−1
)
, we obtain that

Ac(m)∗(zm−1) = cmzm−1 +
∞∑

j=m

cj+1 − cj(
j

m−1
) zj .

By (1.1), we get that

Dσ,m−1

(
Ac(m)∗(zm−1)

)
= |cm|2 +

∞∑

j=m

|cj+1 − cj |2
(

j

m − 1

)−1
. (2.2)

Let b(z) =
∑∞

j=0 bjzj ∈ Hσ,m−1. By (1.1), we have

Dσ,m−1(b) =
∞∑

j=m−1
|bj |2

(
j

m − 1

)
< ∞.

This together with (2.2) and an application of Cauchy–Schwarz inequality shows that
the infinite series

∑∞
k=j+1(ck+1 −ck)bk converges absolutely for every j ⩾ m. Moreover,

using the continuity of Ac(m) on Ĥσ,m−1 and the orthogonality of {zj : j ⩾ m − 1} in
Ĥσ,m−1, we get that

Ac(m)
( ∞∑

j=m−1
bjzj

)
=

∞∑

j=m−1

(
cj+1bj +

∞∑

k=j+1
(ck+1 − ck)bk

)
zj . (2.3)

In this section, we shall be using the local Douglas formula for higher order local
Dirichlet-type integrals [10, Theorem 1.1] repeatedly. Here we are reproducing this
formula for the sake of reader’s convenience.
Theorem 2.3 (A higher order local Douglas formula). Let n be a positive integer,
λ ∈ T, and f ∈ O(D). Then f ∈ Hλ,n if and only if f = α + (z − λ)g for some g
in Hσ,n−1 and α ∈ C. Moreover, in this case, the following statements hold:

(i) Dλ,n(f) = Dσ,n−1(g),
(ii) f(z) → α as z → λ in each oricyclic approach region |z −λ| < κ(1−|z|2) 1

2 , κ > 0.
In particular, f∗(λ) exists and is equal to α.

The following theorem tells us that Ac(m) being a bounded linear operator is
equivalent to c being a Hadamard multiplier of Hµ,m for every µ ∈ M+(T).
Theorem 2.4. Let m ∈ N, c ∈ O(D). The following statements are equivalent:

(i) c is a Hadamard multiplier of Hµ,m for every µ ∈ M+(T),
(ii) c is a Hadamard multiplier of Hλ,m for some λ ∈ T,
(iii) the transformation Ac(m) defines a bounded operator on Ĥσ,m−1.

Moreover, in this case, for every µ ∈ M+(T), we have

Dµ,m(c ∗ f) ⩽ ∥Ac(m)∥2Dµ,m(f), f ∈ Hµ,m.



380 Soumitra Ghara, Rajeev Gupta, and Md. Ramiz Reza

Proof. (iii)⇒(i) Assume that the linear transformation Ac(m) defines a bounded
operator on the Hilbert space Ĥσ,m−1. Fix a λ ∈ T. Let f ∈ Hλ,m and the associated
power series representation of f be given by f(z) =

∑∞
j=0 ajzj . By the higher order

local Douglas formula, f(z) = a + (z − λ)Lλ[f ](z), z ∈ D, where a = f∗(λ) (the bound-
ary value of f at λ) and Lλ[f ] ∈ Hσ,m−1 with Dλ,m(f) = Dσ,m−1(Lλ[f ]). Writing
Lλ[f ](z) =

∑∞
j=0 bjzj , we obtain the relations

a0 = a − b0λ, ak = bk−1 − bkλ, k ⩾ 1. (2.4)

Note that

Dλ,m(f) = Dσ,m−1(Lλ[f ]) =
∞∑

j=m−1
|bj |2

(
j

m − 1

)
= Dσ,m−1

( ∞∑

j=m−1
bjzj

)
.

As Ac(m) defines a bounded operator on Ĥσ,m−1 and |λ| = 1, we know that the
series

∑∞
k=j+1(ck+1 − ck)bkλk converges absolutely for every j ⩾ m (see the discussion

preceding this theorem) and it makes sense to consider the formal power series g
given by

g(z) =
∞∑

j=0

(
cj+1bj +

∞∑

k=j+1
(ck+1 − ck)bkλk−j

)
zj

=
∞∑

j=0

(
cj+1bjλj +

∞∑

k=j+1
(ck+1 − ck)bkλk

)
(λ̄z)j .

Then by (2.4), it follows that (c ∗ f)(z) = A + (z − λ)g(z) for every z ∈ D for some
A ∈ C. Note that

Dσ,m−1

( ∞∑

j=m−1
bjλjzj

)
= Dσ,m−1

( ∞∑

j=m−1
bjzj

)
= Dλ,m(f),

and

Dσ,m−1(g) =
∞∑

j=m−1

∣∣cj+1bjλj +
∞∑

k=j+1
(ck+1 − ck)bkλk

∣∣2
(

j

m − 1

)

= Dσ,m−1

(
Ac(m)

( ∞∑

j=m−1
bjλjzj

))
< ∞.

Thus applying [10, Theorem 1.1] a second time, we obtain c ∗ f ∈ Hλ,m, and

Dλ,m(c ∗ f) = Dσ,m−1(g).

Hence we obtain that

sup
{

Dλ,m(c ∗ f) : Dλ,m(f) = 1
}

= ∥Ac(m)∥2. (2.5)
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This gives us that Dλ,m(c ∗ f) ⩽ ∥Ac(m)∥2Dλ,m(f) for every f ∈ Hλ,m. Since λ ∈ T
was arbitrary, for any f ∈ Hµ,m, it follows that

Dµ,m(c ∗ f) =
∫

T

Dλ,m(c ∗ f)dµ(λ)

⩽ ∥Ac(m)∥2
∫

T

Dλ,m(f)dµ(λ)

= ∥Ac(m)∥2Dµ,m(f).

Hence we obtain that c is a Hadamard multiplier of Hµ,m for every µ ∈ M+(T).
(i)⇒(ii) is obvious.
(ii)⇒(iii) Assume that c is a Hadamard multiplier of Hλ,m for some λ ∈ T. Following

Proposition 2.2, we obtain that the linear transformation Hc on the Hilbert space Ĥλ,m

given by Hc(f) = c ∗ f, for f ∈ Ĥλ,m is bounded. Moreover, there exists a constant
κ = ∥Hc∥2 such that

Dλ,m(c ∗ f) ⩽ κDλ,m(f), for all f ∈ Hλ,m. (2.6)

Note that, by the higher order local Douglas formula, every f ∈ Hλ,m can be uniquely
written as

f(z) = a + (z − λ)Lλ[f ](z),

where a ∈ C and Dλ,m(f) = Dσ,m−1(Lλ[f ]). As c is a Hadamard multiplier of Hλ,m,
the inequality in (2.6) can be rephrased as

Dσ,m−1(Lλ[c ∗ f ]) ⩽ κDσ,m−1(Lλ[f ]), for all f ∈ Hλ,m. (2.7)

In view of the higher order local Douglas formula, we have that for any g ∈ Hσ,m−1,
the function (z − λ)g ∈ Hλ,m and consequently Dσ,m−1(Lλ[c ∗ (z − λ)g]) < ∞. Note
that for any f ∈ Hσ,m−1, the function f − sm−2[f ] ∈ Ĥσ,m−1 whenever m ⩾ 2. Now
consider the transformation Ĥc(m) from the Hilbert space Ĥσ,m−1 into itself defined by

Ĥc(m)(g) :=
{

Lλ[c ∗ (z − λ)g] if m = 1,

Lλ[c ∗ (z − λ)g] − sm−2[Lλ[c ∗ (z − λ)g]] if m ⩾ 2,
g ∈ Ĥσ,m−1.

In view of the inequality (2.7), we obtain that

Dσ,m−1

(
Ĥc(m)(g)

)
= Dσ,m−1(Lλ[c ∗ (z − λ)g])

⩽ κDσ,m−1(Lλ[(z − λ)g])
= κDσ,m−1(g),
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for every g ∈ Ĥσ,m−1. Let’s compute the matrix representation of Ĥc(m) with respect
to the orthogonal basis {(λ̄z)j : j ⩾ m − 1} of Ĥσ,m−1. Note that for any j ⩾ (m − 1),

Lλ

[
c ∗ (z − λ)(λ̄z)j

]
= Lλ

[
cj+1λ̄jzj+1 − cj λ̄j−1zj

]

= cj+1λ̄j zj+1 − λj+1

z − λ
− cj λ̄j−1 zj − λj

z − λ

= (cj+1 − cj)
j−1∑

k=0
(λ̄z)k + cj+1(λ̄z)j .

Thus it follows that for any j ⩾ (m − 1), we have

Ĥc(m)
(

(λ̄z)j
)

= (cj+1 − cj)
j−1∑

k=m−1
(λ̄z)k + cj+1(λ̄z)j .

Hence the matrix representation of the operator Ĥc(m) with respect to the orthogonal
basis {(λ̄z)j : j ⩾ m − 1} of Ĥσ,m−1 coincides with the matrix Tc(m). Let V be the
unitary operator on Ĥσ,m−1 defined by

V
( ∞∑

j=m−1
bjzj

)
=

∞∑

j=m−1
bj(λ̄z)j

.

In view of (2.3), it is easy to verify that V −1Ĥc(m)V (zj) = Ac(m)(zj) for
every j ⩾ (m − 1). Hence Ac(m) must define a bounded operator on Ĥσ,m−1 and
∥Ac(m)∥ = ∥Ĥc(m)∥.

Remark 2.5. It is straightforward to verify that any function c ∈ O(D) with Taylor
coefficients {cn} is a Hadamard multiplier for Hσ,m if and only if {cn}n⩾0 is bounded.
On the other hand, if we define cn = 1 if n is odd and cn = 0 if n is even, then the
linear transformation Ac(m) will be unbounded on Ĥσ,m−1, as noted in [17, p. 52]
in the case m = 1. To see this for general m, note that for any even n ⩾ m,

∥∥Ac(m)(zn)
∥∥2

σ,m−1 =
n∑

k=m−1

(
k

m − 1

)
=

(
n + 1

m

)
.

Therefore

∥Ac(m)∥ ⩾
(

n

m − 1

)− 1
2
(

n + 1
m

) 1
2

∼
√

(n + 1)m

nm−1

for all even n ⩾ m. Hence Ac(m) is unbounded on Ĥσ,m−1.
Remark 2.6. If c is a Hadamard multiplier of Hλ,m for some λ ∈ T, then by
Proposition 2.2, the operator Hc : Ĥλ,m → Ĥλ,m, defined by Hc(f) = c∗f , is bounded.
In view of (2.5), it follows that, in this case,

∥Hc : Ĥλ,m → Ĥλ,m∥ = ∥Ac(m)∥.
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3. GENERALIZED CESÀRO SUMMABILITY
IN HIGHER ORDER DIRICHLET SPACES

In this section, we provide proofs of Theorems 1.1 and 1.3. We shall need the following
property of the Gamma function (see [1, p. 257, (6.1.46)]):

lim
k→∞

kb−a Γ(k + a)
Γ(k + b) = 1, a, b ∈ C. (3.1)

We start with the following lemma.
Lemma 3.1. Let α ∈

( 1
2 , 1

)
. Then there exists a positive constant C such that

n∑

j=0

Γ(j + α)2

Γ(j + 1)2 ⩽ C(n + 1)2α−1 for all n ⩾ 0.

Proof. By (3.1), there exists a constant C1 > 0 such that Γ(k+α)
Γ(k+1) ⩽ C1(k + 1)α−1

for all k ∈ Z⩾0. Thus we have

n∑

j=0

Γ(j + α)2

Γ(j + 1)2 ⩽ C2
1

n∑

j=0
(j + 1)2α−2 ⩽ C2

1

n∑

j=0

j+1∫

j

t2α−2 dt

= C2
1

n+1∫

j=0

t2α−2 dt = C2
1

2α − 1(n + 1)2α−1.

Choosing C = C2
1

2α−1 completes the proof of the lemma.

Theorem 3.2. Let α ∈
( 1

2 , 1
)
. For each n ∈ N, let

hn(z) =
(

n + α

α

)−1 n∑

k=0

(
n − k + α

α

)
zk.

Then the family of linear transformations

Ahn(m) : Ĥσ,m−1 → Ĥσ,m−1, n ∈ N,

is uniformly bounded in operator norm.

Proof. Note that
{(

j
m−1

)− 1
2 zj

}
j⩾m−1 forms an orthonormal basis of Ĥσ,m−1. Fix

n ∈ N. With respect to this orthonormal basis, let ((ai,j))∞
i,j=m−1 denote the matrix

of Ahn(m). From (2.3), it is easy to see that

ai,j =





cj+1, if i = j,√
( i

m−1)
( j

m−1)
(cj+1 − cj), if i + 1 ⩽ j,

0, otherwise,
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where cj =
(

n+α
α

)−1(
n−j+α

α

)
for j ⩽ n and cj = 0 for j > n. Note that all the entries

of the matrix ((ai,j))∞
i,j=m−1 are zero except finitely many. Thus we have

∥Ahn(m)∥ = ∥((ai,j))n
i,j=m−1∥

⩽

∥∥∥∥∥∥∥∥∥




am−1,m−1 0 . . . 0
0 am,m . . . 0
...

... . . . 0
0 0 . . . an,n




∥∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥∥




0 am−1,m . . . am−1,n

0 0 . . . am,n

...
... . . . an−1,n

0 0 . . . 0




∥∥∥∥∥∥∥∥∥

⩽ max
m−1⩽i⩽n

|ai,i| +
n∑

j=m

j∑

i=m−1
|ai,j |2

⩽ 1 +
n∑

j=m

j−1∑

i=m−1
|ai,j |2.

Here for the second last inequality, we have used the fact that the operator norm of
a matrix is bounded by its Hilbert–Schmidt norm, see [5, Chapter 1, Proposition 1.6].
It is easily verified that for 0 ⩽ j ⩽ n, we have

cj+1 − cj = 1(
n+α

α

)
((

n − j − 1 + α

α

)
−

(
n − j + α

α

))

= − α Γ(n − j + α)(
n+α

α

)
Γ(α + 1)Γ(n − j + 1)

.

Note that
n∑

j=m

j−1∑

i=m−1
|ai,j |2 ⩽ α2

(Γ(α + 1))2
(

n+α
α

)2

n∑

j=m

j−1∑

i=m−1

(
i

m−1
)

(
j

m−1
) (Γ(n − j + α))2

(Γ(n − j + 1))2

= α2

(Γ(α + 1))2
(

n+α
α

)2

n∑

j=m

1(
j

m−1
) (Γ(n − j + α))2

(Γ(n − j + 1))2

j−1∑

i=m−1

(
i

m − 1

)

= α2

(Γ(α + 1))2
(

n+α
α

)2

n∑

j=m

1(
j

m−1
) (Γ(n − j + α))2

(Γ(n − j + 1))2

(
j

m

)

= α2

m(Γ(α + 1))2
(

n+α
α

)2

n∑

j=m

(j − m + 1)(Γ(n − j + α))2

(Γ(n − j + 1))2

⩽ α2(n − m + 1)
m(Γ(α + 1))2

(
n+α

α

)2

n∑

j=m

(Γ(n − j + α))2

(Γ(n − j + 1))2

= α2(n − m + 1)
m(Γ(α + 1))2

(
n+α

α

)2

n−m∑

j=0

(Γ(j + α))2

(Γ(j + 1))2

⩽ C
α2

m(Γ(α + 1))2
(

n+α
α

)2 (n − m + 1)2α.
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Here, we have used a well-known binomial identity
∑j−1

i=m−1
(

i
m−1

)
=

(
j
m

)
, (see

[7, p. 46]), while the last inequality follows from Lemma 3.1. Also, by (3.1), we
get

(
n+α

α

)
∼ (n + 1)α. This completes the proof.

The following lemma might be well-known to the experts. We provide a proof for
the sake of completeness.

Lemma 3.3. Let {Tn}n⩾1 be a sequence of bounded linear operators on a reproducing
kernel Hilbert space H of holomorphic functions on D. Suppose that:

(i) Tn is finite-rank for each n ∈ N,
(ii) TnTm(H) ⊆ Tm(H) for each m, n ∈ N,
(iii) Tn(f)(z) → f(z) as n → ∞ for all f ∈ H and for all z ∈ D.

Then Tn(f) → f in norm as n → ∞ for all f ∈ H if and only if supn ∥Tn∥ < ∞.

Proof. Suppose Tn(f) → f in norm as n → ∞ for all f ∈ H. Then, by the uniform
boundedness principle, it follows that supn ∥Tn∥ < ∞. For the converse, assume
that supn ∥Tn∥ < ∞. Let K(z, w) denote the reproducing kernel of H. Since
Tn(f)(z) → f(z) as n → ∞ for all z ∈ D, by the reproducing property of H,
it follows that ⟨Tn(f), g⟩ → ⟨f, g⟩ for all g of the form

∑ℓ
i=1 aiK(·, wi), where

ai ∈ C, wi ∈ D, ℓ ∈ N. Since the set {∑ℓ
i=1 aiK(·, zi) : ai ∈ C, zi ∈ D, ℓ ∈ N} is

dense in H, and supn ∥Tn∥ < ∞, it follows that Tn(f) → f weakly as n → ∞ for all
f ∈ H. The proof is now complete by [11, Lemma 2.3].

We now are ready to prove main theorem of this section.

Proof of Theorem 1.1. In view of [12, Theorem 43], it is sufficient to consider
1
2 < α < 1. Suppose f ∈ Hµ,m. Note that σα

n [f ](z) = (hn ∗ f)(z), where
hn(z) =

(
n+α

α

)−1 ∑n
k=0

(
n−k+α

α

)
zk, n ∈ N. By Theorem 3.2, there exists a constant

κ > 0 such that ∥Ahn(m)∥ ⩽ κ for all n ∈ N. Using this along with Theorem 2.4,
we get

Dµ,m(σα
n [f ]) = Dµ,m(hn ∗ f) ⩽ ∥Ahn

(m)∥2Dµ,m(f) ⩽ κ2Dµ,m(f).

To prove the second part, let Tn be the operator on (Ĥµ,m, Dµ,m(·)) defined by
Tn(f) = σα

n [f ]. It is easy to see that Tn is finite-rank and TnTℓ(Ĥµ,m) ⊆ Tℓ(Ĥµ,m)
for each n, ℓ. Also, since for any f ∈ O(D), sn[f ](z) → f(z) for each z ∈ D, by
[12, Theorem 4.3], we obtain that Tn(f)(z) → f(z) for each z ∈ D. Further, by the
first part of this Theorem, supn ∥Tn∥ < ∞. Hence by Lemma 3.3, it follows that
Dµ,m(σα

n [f ] − f) → 0 as n → ∞ for all f ∈ Ĥµ,m. Now let f =
∑

i⩾0 aiz
i ∈ Hµ,m.

Then f1 :=
∑

i⩾m aiz
i ∈ Ĥµ,m and Dµ,m(σα

n [f ] − f) = Dµ,m(σα
n [f1] − f1) → 0 as

n → ∞. This completes the proof.

Proof of Corollary 1.2. Let α > 1
2 . It is easy to see that ∥sn[f ] → f∥H2 → 0 for all

f ∈ H2. Thus by [12, Theorem 4.3], ∥σα
n [f ] − f∥H2 → 0 for all f ∈ H2. This together

with Theorem 1.1 completes the proof of this Corollary.
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We proceed now to show that the statement of Theorem 3.2 does not hold true if
α ⩽ 1/2. It is enough to disprove the statement for α = 1/2.

Proposition 3.4. Suppose for each n ∈ N,

gn(z) =
n∑

k=0

(
1 − k

n + 1

)1/2
zk.

Then for any m ∈ N, the family {Agn(m) : n ∈ N} is not uniformly bounded.
Proof. Fix n ∈ N. Let ck = (1 − k

n+1 )1/2, k = 1, . . . , n. Consider the sub-matrix PAQ

of DTgn
(m)D−1, where

A :=




cs+1 − cs . . . cn+1 − cn

... . . . ...
cs+1 − cs . . . cn+1 − cn




(s+1)×(n−s+1)

,

P = diag
((

s

m − 1

) 1
2

,

(
s + 1
m − 1

) 1
2

, . . . ,

(
2s

m − 1

) 1
2
)

,

Q = diag
((

s

m − 1

)− 1
2

,

(
s + 1
m − 1

)− 1
2

, . . . ,

(
n

m − 1

)− 1
2
)

,

and

D = diag
((

m − 1
m − 1

) 1
2

,

(
m

m − 1

) 1
2

, . . .

)
.

Note that
∥PAQ∥ ⩾ αβ∥A∥,

where α and β are minimum of the eigenvalues of P and Q respectively, and ∥ · ∥
denotes the operator norm. As shown in [17, Theorem 2.2], it turns out that AA∗ is
a square matrix of size (s + 1) with each of its entries equal to (

∑n
k=s |ck+1 − ck|2)1/2.

Therefore we obtain the following:

∥PAQ∥ ⩾

√√√√
(

s
m−1

)
(

n
m−1

)√
s + 1

( n∑

k=s

|ck+1 − ck|2
)1/2

. (3.2)

Since, for a fixed m ∈ N,
(

s
m−1

)
∼ (s + 1)m−1 and

(
n

m−1
)

∼ (n + 1)m−1, it follows from
(3.2) that

∥PAQ∥ ⩾ C

√
(s + 1)m

(n + 1)m−1

( n∑

k=s

|ck+1 − ck|2
)1/2

,

for some positive constant C (independent of n and s). It follows from [17, p. 7] that

∥PAQ∥ ⩾ C

√
(s + 1)m

(n + 1)m−1
1

2
√

n + 1
√

log(n + 2 − s) = C

2

√
(s + 1)m

(n + 1)m

√
log(n + 2 − s).
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Choosing s = ⌊ n
2 ⌋, we get that

∥PAQ∥ ⩾ C

2m+1

√
log(2 + n/2). (3.3)

Now as n approaches to ∞, the right hand side of (3.3) tends to ∞ as well. As
∥Agn(m)∥ = ∥DTgn(m)D−1∥, it follows from (3.3) that the family {Agn(m) : n ∈ N}
is not uniformly bounded.

Proof of Theorem 1.3. Let α = 1
2 . Note that σα

n [f ](z) = (hn ∗ f)(z), where hn(z) =(
n+α

α

)−1 ∑n
k=0

(
n−k+α

α

)
zk, n ∈ N. By [17, Theorem 3.2], for any f ∈ Hλ,m, the

sequence {hn ∗ f} does not converge to f in Hλ,m if and only if the sequence {ϕn ∗ f}
does not converge to f in Hλ,m, where for each n ∈ N, ϕn(z) =

∑n
k=1 ckzk with

ck = (1 − k
n+1 )1/2, k = 1, . . . , n. By Proposition 3.4, the family {Aϕn(m)}n∈N is

not uniformly bounded. Thus, by Remark 2.6, it follows that the family {Hϕn}n∈N,
where Hϕn : Ĥλ,m → Ĥλ,m is given by Hϕn(f) = ϕn ∗ f , is not uniformly bounded.
An application of the uniform boundedness principle now completes the proof.

4. CONVERGENCE OF GENERALIZED CESÀRO SUM

In this section, we provide an alternative proof of Theorem 1.1 using the method of
induction. For any f ∈ O(D), let Lf be the function in O(D) defined by

Lf(z) := f(z) − f(0)
z

, z ∈ D.

It is known that for any µ ∈ M+(T) and m ∈ N, the inequality Dµ,m(Lf) ⩽ Dµ,m(f)
holds for every f ∈ Hµ,m, see [9, Lemma 2.9]. Moreover, from [9, Lemma 2.10] and
[9, Corollary 3.3], we have the following result which will be crucial for the proof of
Theorem 1.1 presented in this section.

Lemma 4.1. Let m ⩾ 1 and µ ∈ M+(T). Then for any function f in Hµ,m, we have

∞∑

k=1
Dµ,j(Lkf) = Dµ,j+1(f), 0 ⩽ j ⩽ m − 1.

Now we start with the following proposition which describes a relationship between
Lj(σα

n [f ]) and σα
n−j [Ljf ] for any function f ∈ O(D).

Proposition 4.2. For every f ∈ O(D), n ∈ Z⩾0, α ⩾ 0, and j ∈ N, we have

Lj(σα
n [f ]) =

{
Γ(n+1)Γ(n+α−j+1)
Γ(n−j+1)Γ(n+α+1) σα

n−j [Ljf ], j ⩽ n,

0, j > n.
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Proof. Since for any f ∈ O(D) and n ∈ Z⩾0, σα
n [f ] is a polynomial of degree at most n,

it follows that Lj(σα
n [f ]) = 0 whenever j > n. For the remaining case, let f ∈ O(D).

Note that

σα
n [f ](z) = Γ(n + 1)

Γ(n + α + 1)

n∑

k=0

Γ(n − k + α + 1)
Γ(n − k + 1) akzk, n ∈ Z⩾0, α ⩾ 0.

Operating L on both sides, we get

L(σα
n [f ])(z) = Γ(n + 1)

Γ(n + α + 1)

n−1∑

k=0

Γ(n − k + α)
Γ(n − k) ak+1zk, n ∈ N, α ⩾ 0.

Hence it follows that

L(σα
n [f ]) =

{
Γ(n+1)Γ(n+α)
Γ(n+α+1)Γ(n) σα

n−1[Lf ], n ⩾ 1,

0, n = 0.

This completes the proof of the proposition for the case j = 1. Fix k ∈ N with k < n.
Assume that the statement of the proposition holds for j = k. Then applying the
induction hypothesis for the function Lf we obtain that for any m ∈ Z⩾0 satisfying
m ⩾ k,

Lk(σα
m[Lf ]) = Γ(m + 1)Γ(m + α − k + 1)

Γ(m − k + 1)Γ(m + α + 1) σα
m−k[Lk+1f ].

Since L(σα
m+1[f ]) = Γ(m+2)Γ(m+α+1)

Γ(m+α+2)Γ(m+1) σα
m[Lf ] for every m ∈ Z⩾0, we obtain that

Lk+1(σα
m+1[f ]) = Γ(m + 2)Γ(m + α − k + 1)

Γ(m + α + 2)Γ(m − k + 1) σα
m−k[Lk+1f ], m ⩾ k.

This gives us that for any n ∈ Z⩾0,

Lk+1(σα
n [f ]) =

{
Γ(n+1)Γ(n+α−k)
Γ(n+α+1)Γ(n−k) σα

n−k−1[Lk+1f ], k + 1 ⩽ n,

0, k + 1 > n.

This finishes the induction step for j = k+1 and completes the proof of the proposition.

Alternative proof of Theorem 1.1. Let µ ∈ M+(T), n ∈ N, and α > 1
2 . We will prove

this theorem by induction on m. From [17, Theorem 1.1], it follows that there exists
a constant Mα, independent of n, such that Dµ,1(σα

n [f ]) ⩽ MαDµ,1(f) for every
f ∈ Hµ,1. Let us assume that Dµ,m(σα

n [f ]) ⩽ MαDµ,m(f) for every f ∈ Hµ,m, and for
m = 1, . . . , k. Now take f ∈ Hµ,k+1. Since σα

n [f ] is a polynomial of degree at most n,
from Lemma 4.1, it follows that

Dµ,k+1(σα
n [f ]) =

n∑

j=1
Dµ,k(Lj(σα

n [f ])).



Cesàro summability of Taylor series. . . 389

Now applying Proposition 4.2 and the induction hypothesis, we obtain that

Dµ,k+1(σα
n [f ]) =

n∑

j=1

(
Γ(n + 1)Γ(n + α − j + 1)
Γ(n − j + 1)Γ(n + α + 1)

)2
Dµ,k(σα

n−j [Ljf ])

⩽
n∑

j=1
Dµ,k(σα

n−j [Ljf ]) ⩽ Mα

n∑

j=1
Dµ,k(Ljf)

⩽ Mα

∞∑

j=1
Dµ,k(Ljf) = MαDµ,k+1(f).

This completes the induction step for m = k + 1 and the proof of the theorem.
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