PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Investigation of Increasing-Decreasing Stepped Micro Pin Fin Heat Sink Having Various Arrangements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ongoing trend of miniaturization of electronic devices, including computer processors, high-speed servers and micro-electromechanical system devices, should go hand in hand with their improved performance. However, managing heat remains a major challenge for these devices. In the present study, a numerical investigation was done on a micro-channel heat sink with an openstepped micro-pin fin heat sink with various arrangements through ANSYS software. Pin fin was varied in a fashion of increasing and decreasing. The working fluid opted for was water in a single phase. The analysis takes into account varying thermo-physical properties of water. The operating parameters, i.e. the Reynolds number was taken as 100–350 and heat flux as 500 kW/m2 . Arrangements selected were staggered and inline. Observationsrevealed that the staggered 2 arrangement has shown better thermal performance than other arrangements within the entire investigated range of Reynolds numbers because of the effective mixing of fluids. Furthermore, the inline configuration of micro pin fin heat sink has the worst performance. It is interesting to note that a very small difference was observed in the heat transfer capability of both staggered configurations, while the pressure drop in the staggered 2 arrangement has shown an elevated value at a higher Reynold number value compared to the staggered 1 arrangement.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurugram, Haryana-122103, India
  • Department of Electrical Engineering, Poornima College of Engineering, Jaipur-302033, India
  • Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
  • Department of Thermal Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  • Department of Mechanical Engineering, Graphic Era Hill University, Dehradun, Uttarakhand-248002, India
  • Department of Mechanical Engineering, Shivalik College of Engineering, Dehradun, India
  • Department of Mechanical Engineering, U.P.E.S, Dehradun, India
  • Department of Mechanical Engineering, U.P.E.S, Dehradun, India
  • Department of Mechanical Engineering, Dr. A.P.J.A.K.I.T. Tanakpur, India
  • Department of Mechanical Engineering, Motihari College of Engineering, Motihari, India
autor
  • Department of Mechanical Engineering, Bakhtiyarpur College of Engineering, Bakhtiyarpur Dedaur, Bakhtiyarpur, Patna, India
  • Department of Mechanical Engineering, V.I.T., Vellore, India
Bibliografia
  • [1] Mudawar, I., & Lee, J. (2009). Low-Temperature Two-Phase Microchannel Cooling for High-Heat-Flux Thermal Management of Defense Electronics. IEEE Transactions on Components Package. Technologies, 32(2), 453–465. doi: 10.1109/TCAPT.2008.2005783
  • [2] Pedram, M., & Nazarian, S. (2006). Thermal modeling, analysis, and management in VLSI circuits: Principles and methods. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 94(8), 1487–1501. doi: 10.1109/JPROC.2006.879797
  • [3] Ahmed, H.E., Salman, B.H., Kherbeet, A.S. & Ahmed, M. I. (2018). Optimization of thermal design of heat sinks: A review. Intenational Journal of Heat and Mass Transfer, 118, 129–153. doi: 10.1016/j.ijheatmasstransfer.2017.10.099
  • [4] Gururatana, S. (2012). Heat Transfer Augmentation for Electronic Cooling. American Journal of Applied Sciences, 9(3), 436–439. doi: 10.3844/ajassp.2012.436.439
  • [5] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 15(2), 102417. doi: 10.1016/j.asej.2023.102417
  • [6] Naqiuddin, N.H., Saw, L.H., Yew, M.C., Yusof, F., Ng, T.C. & Yew, M.K. (2018). Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82, 901–914. doi: 10.1016/j.rser.2017.09.110
  • [7] Tuckerman D.B., & Pease, R.F.W. (1995). High-Performance Heat Sinking for VLSI, IEEE Electron Device Letters, 2(5), 126–129. doi: 10.1109/EDL.1981.25367
  • [8] Bhandari, P., Singh, J., Kumar, K., & Ranakoti, L. (2022). Active techniques in microchannel heat sink for miniaturization problem in electronic industry: A review. Acta Innovations, 45, 45–54. doi: 10.32933/actainnovations.45.4
  • [9] Japar, W.M.A.A., Sidik, N.A.C., Saidur, R., Asako, Y., & Yusof, S.N.A. (2020). A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids : Current advancements and challenges. Nanotechnology Reviews, 9(1), 1192–1216. doi: 10.1515/ntrev-2020-0094
  • [10] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 15(2), 102417. doi: 10.1016/j.asej.2023.102417
  • [11] Kumar, N., Singh, P., Redhewal, A.K., & Bhandari, P. (2015). A review on nanofluids applications for heat transfer in microchannels. Procedia Engineering, 127, 1197–1202. doi: 10.1016/j.proeng.2015.11.461
  • [12] Chamkha, A. ., Molana, M., Rahnama, A., & Ghadami, F. (2018). On the nanofluids applications in microchannels: A comprehensive review. Powder Technology, 332, 287–322. doi: 10.1016/j.powtec.2018.03.044
  • [13] Prajapati, Y.K., & Bhandari, P. (2017). Flow boiling instabilities in microchannels and their promising solutions – A review. Experimental Thermal and Fluid Science, 88, 576–593. doi: 10.1016/j.expthermflusci.2017.07.014
  • [14] Bhandari, P., Rawat, K., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: A review. Journal Energy Storage, 66, 107548. doi:10.1016/j.est.2023.107548
  • [15] Bhandari, P., Padalia, D., Ranakoti, L., Khargotra, R., András, K., & Singh, T. (2023). Thermo-hydraulic investigation of open micro prism pin fin heat sink having varying prism sides. Alexandria Engineering Journal, 69, 457–468. doi: 10.1016/j.aej.2023.02.016
  • [16] Bhandari, P., & Prajapati, Y.K. (2021). Thermal performance of open microchannel heat sink with variable pin fin height. Intenational Journal of Thermal Sciences, 159, 106609. doi: 10.1016/j.ijthermalsci.2020.106609
  • [17] Bhandari, P., & Prajapati, Y.K. (2022). Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink, Intenational Journal of Thermal Sciences, 179,107714. doi: 10.1016/j.ijthermalsci.2022.107714
  • [18] Bhandari, P., & Prajapati, Y.K. (2021). Experimental Investigation of Variable Tip Clearance in Square Pin Fin Microchannel Heat Sink. Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference (pp.1351−1356). IIT Madras, Chennai - 600036, Tamil Nadu, India. Begel House Inc. doi: 10.1615/IHMTC-2021.2040
  • [19] Chiu, H.C., Hsieh, R.H., Wang, K., Jang, J.H., & Yu, C.R. (2017). The heat transfer characteristics of liquid cooling heat sink with micro pin fins. International Communications in Heat and Mass Transfer, 86, 174–180. doi: 10.1016/j.icheatmasstransfer.2017.05.027
  • [20] Zhao, J., Huang, S., Gong, L., & Huang, Z. (2016). Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling, Applied Thermal Engineering, 93, 1347–1359. doi: 10.1016/j.applthermaleng.2015.08.105
  • [21] Bhandari, P., & Prajapati, Y.K. (2021). Fluid flow and heat transfer behaviour in distinct array of stepped micro pin fin heat sink, Journal of Enhanced Heat Transfer, 28(4), 31–61. doi: 10.1615/JEnhHeatTransf.2021037008
  • [22] Bhandari, P., Prajapati, Y.K. & Uniyal, A. (2023). Influence of three dimensionality effects on thermal hydraulic performance for stepped micro pin fin heat sink. Meccanica, 58, 2113–2129. doi: 10.1007/s11012-022-01534-4
  • [23] Bhandari, P. (2022). Numerical investigations on the effect of multi-dimensional stepness in Open micro pin fin heat sink using single phase liquid fluid flow. International Communications in Heat and Mass Transfer, 138, 106392. doi: 10.1016/j.icheatmasstransfer.2022.106392
  • [24] Bhandari, P., & Prajapati, Y.K. (2020). Numerical Analysis of Different Arrangement of Square Pin-Fin Microchannel Heat Sink. In Advances in Mechanical Engineering (pp. 879–891). Singapore, Springer Publishing. doi: 10.1007/978-981-15-0124-1_79
  • [25] Bhandari, P., & Prajapati, Y.K. (2021). Numerical study of fluid flow and heat transfer in stepped micro-pin fin heat sink. In Fluid Mechanics and Fluid Power. Lecture Notes in Mechanical Engineering (pp. 373-381). Springer Publishing, Singapore. doi:10.1007/978-981-16-0698-4_40
  • [26] Bhandari, P., Prajapati, Y.K., & Bisht, V.S. (2021). Heat transfer augmentation in micro pin fin heat sink using out of plane fluid mixing. Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference (pp.1595−1600). IIT Madras, Chennai-600036, Tamil Nadu, India. Begel House Inc. doi: 10.1615/IHMTC-2021.2400
  • [27] Bhandari, P., Kumar, K., Ranakoti, L., Bisht, V.S., Lila, M.K., Joshi, K., Raju, N.V.G., Sobti, R., & Jayahari, L. (2023). Thermohydraulic investigation of two stepped micro pin fin heat sink having variable step size. E3S Web of Conferences, 430, 01177. doi: 10.1051/e3sconf/202343001177
  • [28] Bhandari, P., Vyas, B., Padalia, D., Ranakoti, L., Prajapati, Y.K., & Bangri, R.S. (2024). Comparative thermo-hydraulic analysis of periodic stepped open micro pin-fin heat sink. Archives of Thermodynamics, 45(3), 99−105. doi: 10.24425/ather.2024.151228
  • [29] Kaushik, S., & Singh, S. (2019). Analysis on Heat Transmission and Fluid Flow Attributes in Solar Air Accumulator Passage with Diverse Faux Jaggedness Silhouettes on Absorber Panel. International Journal of Engineering and Advanced Technology, 8, 32−41. doi: 10.35940/ijeat.E1011.0785S319
  • [30] Kaushik, S., Panwar, K., & Vashisth, S. (2022). Investigating the Thermionic Effect of Broken Perforated Curved Ribs on Solar Preheater through CFD Simulation. Res Militaris, 12(5),1508−1524.
  • [31] Uniyal, V., Joshi, S.K., Kaushik, S., & Kanojia, N. (2021). CFD Investigation of Transfer of the Heat and Turbulent Flow in Circular Copper Tube with Perforated Conical Rings of Aluminium Material. Materials Today: Proceeding, 46(15), 6719−6725. doi:10.1016/ j.matpr.2021.04.217
  • [32] Thapa, R.K., Bisht, V.S., Bhandari P., & Rawat, K. (2022). Numerical study of car radiator using dimple roughness and nanofluid. Archives of Thermodynamics, 43(3), 125−140. doi:10.24425/ather.2022.143175
  • [33] Kaushik, S., Singh, S., Kanojia, N., Naudiyal, R., Kshetri, R., Paul, A.R., Kumari, R., Kumar, A., & Kumar, S. (2021). Effect of introducing varying number of fins over LED light bulb on thermal behaviour. Materials Today: Proceeding, 46(19),9794−9799. doi: 10.1016/j.matpr.2020.10.876
  • [34] Ghildyal, A., Bisht, V.S., Rawat K.S., & Bhandari, P. (2023). Effect of D-shaped, Reverse D-shaped and U-shaped turbulators in Solar Air Heater on thermo hydraulic performance. Archives of Thermodynamics, 44(2), 3−20. doi: 10.24425/ather.2023.146556
  • [35] Haldia, S., Bisht, V.S., Bhandari, P., Ranakoti, L., & Negi, A. (2024). Numerical assessment of solar air heater performance having broken arc and broken S-shaped ribs as roughness. Archives of Thermodynamics, 45(1), 23−31. doi: 10.24425/ather.2024.150435
  • [36] Kumar, S., Bisht, V.S., Bhandari, P., Ranakoti, L., Negi, A., Bist, A.S., & Padalia, D. (2024). Computational Analysis of Modified Solar Air Heater having Combination of Ribs and Protrusion in S-shaped Configuration. International Journal Interactive Design and Manufacturing, 1−12. doi: 10.1007/s12008-024-01972-2
  • [37] Kaushik, S., Uniyal, V., Ali, S., Kanojia, N., Verma A.K., Joshi S., Makhloga, M., Pargai, P.S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative analysis of fluid flow in mini channel with nano fluids and base fluid. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.05.363
  • [38] Kaushik, S., Uniyal, V., Verma, A.K., Jha, A.K., Joshi, S., Makhloga, M., Pargai, P.S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative Experimental and CFD Analysis of Fluid Flow Attributes in Mini Channel with Hybrid CuO+ZnO+H2O Nano Fluid and (H2O) Base Fluid. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(01),182−195. doi: 10.5109/6781069
  • [39] Kaushik, S., Ali, S., Kanojia, N., Uniyal, V., Verma, A.K., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Experimental and CFD analysis of fluid flow in a rectangular strip-based microchannel with nanofluid. Materials Today: Proceedings. doi.: 10.1016/j.matpr.2023.05.647
  • [40] Kaushik, S., Verma, A., K., Singh, S., Kanojia, N., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Comparative Analysis of Fluid Flow Attributes in Rectangular Shape Micro Channel having External Rectangular Inserts with Hybrid Al2O3+ZnO+H2O Nano Fluid and (H2O) Base Fluid. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(2), 851−862. doi: 10.5109/6792839
  • [41] Kaushik, S., Singh, S., & Panwar, K. (2021). Comparative analysis of thermal and fluid flow behaviour of diverse nano fluid using Al2O3, ZnO, CuO nano materials in concentric spiral tube heat exchanger. Materials Today: Proceedings, 46(15),6625−6630. doi: 10.1016/j.matpr.2021.04.100
  • [42] Kaushik, S., Singh, S., & Panwar, K. (2022). Experimental Study of Fluid Flow Properties in Spiral Tube Heat Exchanger with varying Insert Shape over Spiral Tube Profile. Materials Today: Proceedings, 80(1), 78−84. doi: 10.1016/j.matpr. 2022.10.117
  • [43] Kaushik, S., Singh, S., Kanojia, N., Rawat, K., & Panwar, K. (2020). Comparative Study for Thermal and Fluid Flow Peculia rities in Cascading Spiral Inner Tube Heat Exchanger with or without Diverse Inserts over Spiral Tube. IOP Conference Series: nMaterials Science and Engineering, 802. doi: 10.1088/1757-899X/802/1/012009
  • [44] Singh, B.P., Bisht, V.S., & Bhandari, P. (2021). Numerical Study of Heat Exchanger Having Protrusion and Dimple Roughened Conical Ring Inserts. In Advances in Fluid and Thermal Engineering, Lecture Notes in Mechanical Engineering (pp. 151−162). Springer Publishing, Singapore. doi: 10.1007/978-981-16-0159-0_14
  • [45] Kharkwal, H., & Singh, S. (2022). Effect of serrated circular rings on heat transfer augmentation of circular tube heat exchanger. Archives of Thermodynamics, 43(2), 129−155. doi: 10.24425/ather.2022.141982
  • [46] Singh, B.P., Bisht, V.S., Bhandari, P., & Rawat, K.S. (2021). Thermo-fluidic modelling of a heat exchanger tube with conical shaped insert having protrusion and dimple roughness. Aptisi Transactions on Technopreneurship, 3(2), 127−143. doi:10.34306/att.v3i2.200
  • [47] Kaushik, S., Mahar, V.S., Singh, S., Kshetri, R., Kumar, B., Mehta, J.S., Paul, A.R., Kumar, S., Vashisth, S., Pundir, R.S., & Kumar, A. (2024). Comparative experimental analysis of fluid flow in a concentric tube exchanger having semi hollow cylindrical macro inserts with nanofluid and base fluid. Archives of Thermodynamics, 45(2), 205–212. doi: 10.24425/ather.2024.150866
  • [48] Mei, D., Lou, X., Qian, M., Yao, Z., Liang, L., & Chen, Z. (2013). Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number. International Journal of Heat and Mass Transfer, 70, 709–718. doi: 10.1016/j.ijheatmasstransfer.2013.11.060
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-651a13ae-a34e-449c-8255-471438c423c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.