PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the influence of the percentage of copper content on the physical and chemical properties of the friction material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper is one of the main components of friction materials used in vehicles’ brake systems. It is mainly used due to two features: good thermal conductivity and lubricity. Unfortunately, it is harmful no only to humans but also more to aquatic life. For this reason, there is an attempt to minimize its use. This paper presents the results of testing four groups of samples with different Cu contents (5, 10, 15, and 20%). Laboratory tests were performed using calorimetry, hot wire method, and pin-on-disc method. This allowed to determine selected physico-chemical material properties of samples, which were then used for simulation studies. They were intended to check how the heating process of friction materials with a chemical composition such as made samples will proceed in real conditions, in real brake pads.
Czasopismo
Rocznik
Strony
29--38
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
  • Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
  • Zarmen Sp z.o.o. Stefana Batorego 44, 41-506 Chorzów, Poland
Bibliografia
  • 1. Akampumuza, O. & Wambua, P.M. & Ahmed, A. & Li, W. & Xiao‐Hong, Q. Review of the applications of biocomposites in the automotive industry. Polimer composites. 2017. Vol. 37(11). P. 2553-2569.
  • 2. Stoychevaa, S. & Marcheseb, D. & Paulb, C. & Padoanc, S. & Juhmanic, A. & Linkov, I. Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry. Journal of Cleaner Production. 2018. Vol. 187. P. 257-272.
  • 3. Blau, P.J. Compositions, Functions and testing of friction brake materials and their additives. Oak Ridge national laboratory report no. 19. 2001. US Department of Energy. Tenessee, USA.
  • 4. Nicholson, G. Facts about friction: 100 years of brake linings and clutch facings. 2nd ed. Croydon: PA: P&W Price Enterprises Inc. 1995.
  • 5. Patel, S.K. & Jain, A.K. Experimental study of brake lining materials with different manufacturing parameters, International Journal of Engineering Trends and Technology (IJETT). 2014. No. 7(4). P. 192-197.
  • 6. Kumar, M. & Bijwe, J. Role of different metallic fillers in non-asbestos organic (NAO) friction compo-sites for controlling sensitivity of coefficient of friction to load and speed. Tribology International. No. 43. 2010. P. 965-974.
  • 7. Łukaszewicz, A. Nonlinear numerical model of friction heating during rotary friction welding. Journal of Friction and Wear. 2018. Vol. 39(6). P. 476-482. DOI: 10.3103/S1068366618060089.
  • 8. Blau, P.J. & McLaughlin, J.C. 2003. Effects of water films and sliding speed on the frictional behavior of truck disc brake materials. Tribology International. 2003. No. 36. P. 709-715.
  • 9. Mitsumoto, M. Copper free brake pads with stable friction coefficient. Hitachi Chemical Technical Report. March 2017. No.59. Japan.
  • 10. Surojo, E.J. & Malau, V. Investigation of friction behaviors of brake shoe materials using metallic filter. Tribology in Industry. 2015. Vol. 37(4). P. 473-481.
  • 11. Sharma, S. & Bijwe, J. & Kumar, M. Comparison between nano-and micro-sized copper particles as fillers in NAO friction materials. Nanomaterials and Nanotechnology. 2013. Vol. 3. P. 3-12.
  • 12. Kaleli, H. New Universal Tribometer as Pin or Ball-on-Disc and Reciprocating Pin-on-Plate Types. Tribology in Industry. 2016. No. 38(2). P. 235-240.
  • 13. Amato, F. Non-Exhaust Emissions. An Urban Air Quality Problem for Public Health. Impact and Mitigation Measures. Academic Press. Elsevier. 2018.
  • 14. Memorandum of Understanding on Copper Mitigation in Watershed and Waterways. US Enviromental Protecton Agency. USA, 2015.
  • 15. Regulation No 90. Uniform provisions concerning the approval of replacement brake lining assemblies, drum brake linings and discs and drums for power-driven vehicles and their trailers. Economic Commission for Europe of the United Nations (UN/ECE), 2012.
  • 16. DTSC No. R-2014-01. The Hazardous Materials: Motor Vehicle Brake Friction Materials. California, 2016.
  • 17. China 5 Emission Standard. Ministry of Ecology and Environment (MEE) and the Standardization Administration of China (SAC). China, 2013.
  • 18. Rule 32014, Land Transport Rule: Light-vehicle Brakes Amendment. Waka Kotahi NZ Transport Agency. 2007.
  • 19. Elakhame, Z.U. & Alhassan, O.A. & Samuel, A.E. Development and Production of Brake Pads from Palm Kernel Shell Composites. International Journal of Scientific & Engineering Research. 2014. No. 5(10). P. 735-744.
  • 20. Patel, S.K. & Jain, A.K. Experimental study of brake lining materials with different manufacturing parameters, International Journal of Engineering Trends and Technology (IJETT). 2014. No. 7(4). P. 192-197.
  • 21. Elakhame, Z.U. & Olotu, O.O. & Abiodun, Y.O. Production of asbestos free brake pad using periwinkle shell as filler material, International Journal of Scientific & Engineering Research. 2017. No. 8(6). P. 1728-1735.
  • 22. Surojo, E. & Jamasri, M. Investigation of friction behaviors of brake shoe materials using metallic filter. Tribology in Industry. 2015. No 37(4). P. 473-481.
  • 23. Nuraliza, N. & Syahrullail, S. & Faizal M.H. Tribo-logical properties of aluminum lubricated with palm olein at different load using pin-on-disk machine. Jurnal Tribologi. 2016. No. 9. P. 45-59.
  • 24. Tamboli, K. & Sheth, S. An Overview of Some Experimental Methods in Tribology. In: Proc. National Conference on “Emerging Trends in Mechanical Engi-neering (ETME- 2008).
  • 25. Szpica, D. & Piwnik, J. & Sidorowicz, M. The motion storage characteristics as the indicator of stability of internal combustion engine - receiver cooperation. Mechanika. 2014. Vol. 20(1). P. 108-112.
  • 26. Mieczkowski, G. Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2019. No. 21(2). P. 301-310.
  • 27. Li, X. & Olofsson, U. & Bergseth, E. Pin-on-Disc Study of Tribological Performance of Standard and Sintered Gear Materials Treated with Triboconditioning Process: Pre-treatment by Pressureinduced Tribo-film formation. Tribology Transactions. 2016. No. 60(1). P. 1-43.
  • 28. ASTM G99-17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTMInternational. West Conshohocken. PA. 2017.
  • 29. Ramesh, B.T. & Arun, K.M. & Swamy, R.P. Dry Sliding Wear Test Conducted on Pin-On-Disk Testing Setup for Al6061-Sic Metal Matrix Composites Fabricated by Powder Metallurgy. International Journal of Innovative Science. Engineering & Technology. 2015. No. 2(6). P. 264-270.
  • 30. Nair, R.P. & Griffin, D. & Randall, N.X. The use of the pin-on-disk tribology test method to study three unique industrial applications. Wear. 2009. No. 267. P. 823-827.
  • 31. Puławski, G. & Szpica, D. The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture. Mechanika. 2015. No. 21(6). P. 501-506.
  • 32. Mieczkowski, G. The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry. Journal of Theoretical and Applied Mechanics. 2017. No. 55(1). P. 69-86.
  • 33. Dundulis, R. & Krasauskas, P. & Kilikevičius, S. Modelling and simulation of strength and damping of the support pillar welded by longitudinal weld. Mechanika. 2012. No. 18(2). P. 135-140.
  • 34. Skiedraite, I. & Dragasius, E. & Diliunas S. Modelling of Helbach Array Based Targeting Part of a Magnetic Drug Delivery Device. Mechanika. 2017. No. 23(6). P. 908-915.
  • 35. Borawski, A. Simulation Study of the Process of Friction in the Working Elements of a Car Braking System at Different Degrees of Wear. Acta Mechanica et Automatica. 2018. Vol. 12(3). P. 221-226.
  • 36. Chmiel, A. Finite element simulation methods for dry sliding wear, (Ph.D. thesis). Department of the Air Force. Air University. Air Force Institute of Technology. 2008.
  • 37. Kamiński, Z. A simplified lumped parameter model for pneumatic tubes. Mathematical and Computer Modelling of Dynamical Systems. 2017. No. 23(5). P. 523-535.
  • 38. Khot, S. & Borah U. Finite Element Analysis of Pin-on-Disc Tribology Test. International Journal of Science and Research. 2015. No. 4(4). P. 1475-1480.
  • 39. Mieczkowski, G. & Molski, K. & Seweryn, A. Finite-element modeling of stresses and displacements near the tips of point-ed inclusions. Materials Science. 2007. No. 43(2). P. 183-194.
  • 40. Pérez, A.T. & Fatjó, G.G. & Hadfield, M. & Austen, S. 2011. Model of friction for a pin-on-disc configuration with imposed pin rotation. Mechanism and Machine Theory. 2011. No. 46. P. 1755-1772.
  • 41. Yan, W. & O’Dowd, N.P. & Busso, E.P. 2002. Numerical study of sliding wear caused by a loaded pin on a rotating disc. Journal of the Mechanics and Physics of Solids. 2002. No. 50. P. 449-470.
  • 42. Abdullah, O.I. & Schlattmann, J. 2016. Temperature analysis of a pin-on-disc tribology test using experimental and numerical approaches. Friction. 2016. No. 4(2). P. 135-143.
  • 43. Bijwe, J. Composites as friction materials: Recent Developments in Non- Asbestos Fibre reinforced Friction Materials. Polymer Composites. 1997. No. 18(3). P. 378-395.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-651881ad-0912-46c0-b109-621b09dd518b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.