Identyfikatory
Warianty tytułu
Osadzanie elektroforetyczne powłok nc-TiO2 na stali 316L oraz badania ich właściwości
Języki publikacji
Abstrakty
TiO2 coatings on 316L steel were obtained by use of electrophoretic deposition (EPD) method. Potential zeta of nc-TiO2 particles in suspensions containing water and ethanol in different ratios was measured. Suspensions’ pH was stabilized by addition of acetic or citric acid and ammonia solution. Addition of citric acid in small amount decreased the zeta potential. Optimal suspensions’ parameters for cathodophoretic and anodophoretic deposition were selected based on the results of zeta potential measurements versus pH for suspensions with different water–ethanol concentration. For the chosen suspensions the rate of TiO2 deposition was measured. Coatings’ cohesion was improved by sintering or addition of biopolymer (chitosan) into suspension. The microstructure of coatings was examined by scanning electron microscopy. The roughness and thickness of the coatings were measured by optical profilometer. The corrosion resistance in Ringer’s solution was examined by use of polarization curves. The corrosion resistance of coated steel was higher than that of uncoated one. For sintered coatings the corrosion currents were lower, but the passive area was larger for not sintered ones. The contact angle of the coatings was measured using a sitting drop method and superhydrophilic properties of TiO2 coatings were confirmed. Manufactured coatings may be potentially used as self-cleaning materials. Additionally, TiO2 coatings improve corrosion resistance of steel and exhibit good bactericidal properties. These characteristics may make this sort of materials potentially useful also for medical purposes.
Celem pracy było wytworzenie powłok nc-TiO2 na stali 316L metodą osadzania elektroforetycznego zarówno anodowego, jak i katodowego, a także zbadanie ich mikrostruktury, odporności na korozję oraz zwilżalności.
Wydawca
Czasopismo
Rocznik
Tom
Strony
300--305
Opis fizyczny
Bibliogr. 36 poz., fig., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Ferrous Metallurgy, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Ferrous Metallurgy, Kraków, Poland
Bibliografia
- [1] Blicharski M.: Inżynieria Materiałowa. Stal. Wydawnictwa Naukowo- Techniczne, Warszawa (2004).
- [2] Kociubczyk A., Mendez C., Gregorutti R., Ares A.: Electrochemical tests in stainless steel surgical implants. Procedia Materials Science 9 (2015) 335÷340.
- [3] Dumerval M., Perrin S., Marchetti L., Sennour M., Jomard F., Vaubaillon S., Wouters Y.: Effect of implantation defects on the corrosion of 316L stainless steels in primary medium of pressurized water reactors. Corrosion Science 107 (2016) 1÷8.
- [4] Walczak J., Shahgaldi F., Heatley F.: In vivo corrosion of 316L stainlesssteel hip implants: morphology and elemental compositions of corrosion products. Biomaterials 19 (1998) 229÷237.
- [5] Cui Y., Liu S., Smith K., Hu H., Tang F., Li Y., Yu K.: Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release. Journal of Environmental Sciences 48 (2016) 79÷91.
- [6] Wassilkowska A., Skowronek T., Rybicki S.: Microstructure investigation of premature corroded heat exchanger plates. Materials Testing 58 (2016) 218÷223.
- [7] Mondal J., Marques A., Aarika L., Kozlova J., Simões A., Sammelselga V.: Development of a thin ceramic–graphene nanolaminate coating for corrosion protection of stainless steel. Corrosion Science 105 (2016) 161÷169.
- [8] Sahnesarayi M. K., Sarpoolaky H., Rastegari S.: Effect of heat treatment temperature on the performance of nano-TiO2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions. Surface & Coatings Technology 258 (2014) 861÷870.
- [9] Mumjitha M., Raj V.: Fabrication of TiO2–SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance. Journal of the Mechanical Behavior of Biomedical Materials 46 (2015) 205÷221.
- [10] Lazar A. M., Yespica W. P., Marcelin S., Pébère N., Samélor D., Tendero C., Vahlas C.: Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings. Corrosion Science 81 (2014) 125÷131.
- [11] Feng Q., Li T., Teng H., Zhang X., Zhang Y., Liu C., Jin J.: Investigation on the corrosion and oxidation resistance of Ni–Al2O3 nanocomposite coatings prepared by sediment co-deposition. Surface and Coatings Technology 202 (2008) 4137÷4144.
- [12] Shen G. X., Chen Y. C., Lin C. J.: Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489 (2005) 130÷136.
- [13] Din R. U., Gudla V. C., Jellesen M. S., Ambat R.: Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloys. Surface & Coatings Technology 296 (2016) 1÷12.
- [14] Li Q., Liu Q., Peng B., Chai L., Liu H.: Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Construction and Building Materials 106 (2016) 236÷242.
- [15] Sayyar Z., Babaluoa A. A., Shahrouzi J. R.: Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray. Applied Surface Science 335 (2015) 1÷10.
- [16] Bordesa M. C., Vicenta M., Morenob R., García-Montañoc J., Serrac A., Sánchez E.: Application of plasma-sprayed TiO2 coatings for industrial (tannery) wastewater treatment. Ceramics International 41 (2015) 14468÷14474.
- [17] Zhao Z., Sun J., Zhang G., Bai L.: The study of microstructure, optical and photocatalytic properties of nanoparticles(NPs)–Cu/TiO2 films deposited by magnetron sputtering. Journal of Alloys and Compounds 652 (2015) 307÷312.
- [18] Gil A., Fernández M., Mendizábal I., Korili S. A., Soto-Armañanzas J., Crespo-Durante A., Gómez-Polo: Fabrication of TiO2 coated metallic wires by the sol–gel technique as a humidity sensor. Ceramics International 42 (2016) 9292÷9298.
- [19] Chang H., Su H. T., Chen W. A., Huang K. D., Shu-Hua C., Chen S. L., Chen C. C.: Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition. Solar Energy 84 (2010) 130÷136.
- [20] Chena H. W., Huanga K. C., Hsua C. Y., Lina C. Y., Chena J. G., Leea C. P., Lina L. Y., Vittal R., Ho K. C.: Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell. Electrochimica Acta 56 (2011) 7991÷7998.
- [21] Yuma J. H., Kima S. S., Kima D. Y., Sung Y. E.: Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 173 (2005) 1÷6.
- [22] Moskalewicz T., Czyrska-Filemonowicz A., Boccaccini A. R.: Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti–6Al–7Nb alloy. Surface & Coatings Technology 201 (2007) 7467÷7471.
- [23] Xianga N., Songa R. G., Xianga B., Li H., Wanga Z. X., Wanga C.: A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag + MAO-TiO2 composite films. Applied Surface Science 347 (2015) 454÷460.
- [24] Rahmani N., Dariani R. S.: Strain-related phenomena in TiO2 nanostructures spin-coated on porous silicon substrate. Superlattices and Microstructures 85 (2015) 504÷509.
- [25] Chen F., Liu M.: Preparation of yttria-stabilized zirconia (YSZ) ®lms on La0.85Sr0.15MnO3 (LSM) and LSM±YSZ substrates using an electrophoretic deposition (EPD) process. Journal of the European Ceramic Society 21 (2001) 127÷134.
- [26] Cabanas-Polo S., Boccaccini A. R.: Electrophoretic deposition of nanoscale TiO2: technology and applications. Journal of the European Ceramic Society 36 (2016) 265÷283.
- [27] Hanaor D., Michelazzi M., Veronesi P., Leonelli C., Romagnoli M., Sorrell C.: Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents. Journal of the European Ceramic Society 31 (2011) 1041÷1047.
- [28] Spanoua S., Kontos A. I., Siokouc A., Kontos A. G., Vaenas N., Falaras P., Pavlatou E. A.: Self cleaning behaviour of Ni/nano-TiO2 metal matrix composites. Electrochimica Acta 105 (2013) 324÷332.
- [29] Kumar A. M., Rajendrann N.: Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. Ceramics International 39 (2013) 5639÷5650.
- [30] Zhang W., Xiao X., Zheng L., Wan C.: Fabrication of TiO2/MoS2 @zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light. Applied Surface Science 358 (2015) 468÷478.
- [31] Ando Y., Tobe S., Tahara H.: Photo-catalytic TiO2 film deposition by atmospheric TPCVD. Vacuum 80 (2006) 1278÷1283.
- [32] Hu Y., Yuan C.: Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols. Journal of Crystal Growth 274 (2005) 563÷568.
- [33] Qing Y., Yang C., Yu N., Shang Y., Sun Y., Wang L., Liu C.: Superhydrophobic TiO2/polyvinylidene fluoride composite surface with reversible wettability switching and corrosion resistance. Chemical Engineering Journal 290 (2016) 37÷44.
- [34] Cordero-Arias L., Cabanas-Polo S., Gao H., Gilabert J., Sanchez E.,. Roether J. A., Schubert D. W., Virtanen S., Boccaccini A. R.: Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. RSC Advances 3 (2013) 11247÷11254.
- [35] Yin Y., Huang R., Zhang W., Zhang M., Wang C.: Superhydrophobic–superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate. Chemical Engineering Journal 289 (2016) 99÷105.
- [36] Ledwig P., Kot M., Moskalewicz T., Dubiel B.: Electrophoretic deposition of nc-TiO2/chitosan composite coatings on X2CrNiMo17–12–2 stainless steel. Archives of Metallurgy and Materials 1 (2017) (in press, corrected proof).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65134aea-7cbd-4cbf-9545-58dae1b27577