PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of alternative drive systems in modern special-purpose rail vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In response to the market demand for modern special-purpose rail vehicles, an overview of the rolling stock available on the European and world markets was developed, along with an analysis of the scope of works they performed. The need for new alternative forms of propulsion in line with the development directions, taking into account EU and national environmental goals, was discussed. The paper presents a design of a proprietary modern special-purpose vehicle with an alternative drive. It discusses it compared to other special-purpose vehicles regarding their parameters and the viability of different drive systems, including hydrogen fuel cells.
Rocznik
Tom
Strony
23--33
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Łukasiewicz Research Network, Poznań Institute of Technology, Center of Rail Vehicles
  • Łukasiewicz Research Network, Poznań Institute of Technology, Center of Rail Vehicles
  • Łukasiewicz Research Network, Poznań Institute of Technology, Center of Rail Vehicles
  • Łukasiewicz Research Network, Poznań Institute of Technology, Center of Rail Vehicles
  • Łukasiewicz Research Network, Poznań Institute of Technology, Center of Rail Vehicles
Bibliografia
  • 1. Gis, M., Gis, W. (2022). The current state and prospects for hydrogenisation of motor transport in Northwestern Europe and Poland. Combustion Engines, 190(3), 61-71. https://doi.org/10.19206/CE-144560
  • 2. Menes, M. R. (2022). Program initiatives of public authorities in the field of hydrogenation of the economy in a global perspective, as of the end of 2020. Combustion Engines, 189(2), 18-29. https://doi.org/10.19206/CE-142170
  • 3. Pielecha, I. (2021). Energy management system of the hybrid ultracapacitor-battery electric drive vehicles. Archives of Transport, 58, 2, 47-62. https://doi.org/10.5604/01.3001.0014.8797
  • 4. Kalociński, T. (2022). Modern trends in development of alternative powertrain systems for non-road machinery. Combustion Engines, 188(1), 42-54. https://doi.org/10.19206/CE-141358
  • 5. Cisek, J., Borowski, A., Całkowska, J., Wichary, Ł. (2021). Effect of nitrON® cetane-detergent additive to B7 fuel on energy parameters and exhaust gas composition of a 6Dg locomotive with a Caterpillar C27 engine. Combustion Engines, 186(3), 51-58. https://doi.org/10.19206/CE-140113
  • 6. Far, M., Gallas, D., Urbański, P., Woch, A., Mieżowiec, K. (2022). Modern combustion-electric PowerPack drive system design solutions for a hybrid two-unit rail vehicle. Combustion Engines, 190(3), 80-87. https://doi.org/10.19206/CE-144724
  • 7. Durzyński, Z. (2021). Hydrogen-powered drives of the rail vehicles (part 1). Rail Vehicles/Pojazdy Szynowe, (2), 29-40. https://doi.org/10.53502/RAIL-139980
  • 8. Durzyński, Z. (2021). Hydrogen-powered drives of the rail vehicles (part 2). Rail Vehicles/Pojazdy Szynowe, (3), 1-11. https://doi.org/10.53502/RAIL-142694
  • 9. Karkosiński, D., Stromski, P., Karkosińska Brzozowska, N. (2021). Hybrid energy storage for electric multiple units to operate at the partially electrified line Gdynia-Hel. Rail Vehicles/Pojazdy Szynowe, (1), 18-32. https://doi.org/10.53502/RAIL-138488
  • 10. Kuznetsov, V., Lyubarskyi, B., Kardas-Cinal, E., Yeritsyan, B., Riabov, I., Rubanik, I. (2020) Recommendations for the selection of parameters for shunting locomotive. Archives of Transport, 56, 4, 119-133. https://doi.org/ 10.5604/01.3001.0014.5650
  • 11. Kuznetsov, V., Kardas-Cinal, E., Gołębiowski, P., Liubarskyi, B., Gasanov, M., Riabov, I., ... & Opala, M. (2022). Method of Selecting Energy-Efficient Parameters of an Electric Asynchronous Traction Motor for Diesel Shunting Locomotives—Case Study on the Example of a Locomotive Series ChME3 (ЧMЭ3, ČME3, ČKD S200). Energies, 15(1), 317. https://doi.org/10.3390/en15010317
  • 12. Szkoda, M., Satora, M., & Konieczek, Z. (2020). Effectiveness assessment of diesel locomotives operation with the use of mobile maintenance points. Archives of Transport, 54, 2, 7-19. https://doi.org/10.5604/01.3001.0014.2622
  • 13. Kędra Z. (2017). Technologia robót torowych (pp. 1-261). Politechnika Gdańska.
  • 14. Daszkiewicz P., Andrzejewski M., Urbański P., Woch A., Stefańska N. (2021) Analysis of the exhaust emissions of toxic compounds from a special purpose rail machine PŁT-500 during profiling the ballast cess. Journal of Ecological Engineering, 22(7). https://doi.org/10.12911/22998993/139214
  • 15. Szymanski, P., Ciuffo, B., Fontaras, G., Martini, G., Pekar, F. (2021). The future of road transport in Europe. Environmental implications of automated, connected and low-carbon mobility. Combustion Engines, 186(3), 3-10. https://doi.org/10.19206/CE-141605
  • 16. Giechaskiel, B., Suarez-Bertoa, R., Melas, A., Selleri, T., Maggiore, M. (2022). Assessment of retrofit devices for the Horizon 2020 Cleanest Engine and Vehicle Retrofit Prizes. Combustion Engines, 190(3), 27-34. https://doi.org/10.19206/CE-147158
  • 17. Zeiner M., Landgraf M., Knabl D., Antony B., Barrena Cárdenas V., Koczwara C. (2021) Assessment and Recommendations for a Fossil Free Future for Track Work Machinery. Sustainability; 13(20):11444. https://doi.org/10.3390/su132011444
  • 18. Sobkowiak, A., Świechowicz, R. (2020). Energy balance of the passenger rail vehicles. Rail Vehicles/Pojazdy Szynowe, (1), 49-56. https://doi.org/10.53502/RAIL-138500
  • 19. Wasiak, M., Zdanowicz, P., & Nivette, M. (2021). Research on the effectiveness of alternative propulsion sources in high-tonnage cargo transport. Archives of Transport, 60, 4, 259-273. https://doi.org/10.5604/01.3001.0015.6934.
  • 20. Michalak, P., Merkisz, J., Stawecki, W., Andrzejewski, M., Daszkiewicz, P. (2020). The selection of the engine unit - main engine generator during the modernization of the 19D/TEM2 locomotive. Combustion Engines, 182(3), 38-46. https://doi.org/10.19206/CE-2020-307
  • 21. Materiały firmy Lisinger https://www.linsinger.com/wp-content/uploads/2020/11/MG11-H2_Folder-ENG.pdf
  • 22. Stobnicki, P., & Gallas, D. (2022). Adoption of Modern Hydrogen Technologies in Rail Transport. Journal of Ecological Engineering, 23(3). https://doi.org/10.12911/22998993/145291
  • 23. Zhao, Y., Setzler, B. P., Wang, J., Nash, J., Wang, T., Xu, B., & Yan, Y. (2019). An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule, 3(10), 2472-2484. https://doi.org/10.1016/j.fuproc.2022.107380
  • 24. Cardoso, J. S., Silva, V., Rocha, R. C., Hall, M. J., Costa, M., & Eusébio, D. (2021). Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. Journal of Cleaner Production, 296, 126562. https://doi.org/10.1016/j.jclepro.2021.126562
  • 25. Chiong, M. C., Chong, C. T., Ng, J. H., Mashruk, S., Chong, W. W. F., Samiran, N. A., ... & Valera-Medina, A. (2021). Advancements of combustion technologies in the ammonia-fuelled engines. Energy Conversion and Management, 244, 114460. https://doi.org/10.1016/j.enconman.2021.114460
  • 26. Chatterjee S., Parsapur R.K., Huang K-W. (2021) Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Letters 2021 6 (12), 4390-4394, DOI: 10.1021/acsenergylett.1c02189
  • 27. Urbański, P., Gallas, D., Stachowicz, A., Jakuszko, W., Stobnicki, P. (2022). Analysis of the selection of the auxiliary drive system for a special purpose hybrid rail vehicle. Rail Vehicles/Pojazdy Szynowe, (1), 30-39. https://doi.org/10.53502/RAIL-149405
  • 28. Rynek Kolejowy (2022). Jest pierwsza hybryda z superkondensatorem! Innowacja Newagu na skalę Europy. https://www.rynek-kolejowy.pl/wiadomosci/jest-pierwsza-hybryda-z-superkondensatorem-innowacja-newagu-na-skale-europy-109117.html?fbclid=IwAR2mFxDmuPFAFouUA4SeZZMSJv8pl443OSyeOv0JBDWp6-U9mtEMlsoS5jc
  • 29. Pielecha, I., Merkisz, J., Andrzejewski, M., Daszkiewicz, P., Świechowicz, R., Nowak, M. (2019). Ultracapacitors and fuel cells in rail vehicle drive systems. Rail Vehicles/Pojazdy Szynowe, (2), 9-19. https://doi.org/10.53502/RAIL-138526
  • 30. European Commission - Electrification of the Transport System – Studies and reports (2017)
  • 31. Railway electrification map of the EU (https://openrailwaymap.org/)
  • 32. COUNCIL REGULATION (EU) No 559/2014 of 6 May 2014 establishing the Fuel Cells and Hydrogen 2 Joint Undertaking
  • 33. Fuel Cells 2000
  • 34. EU Directive on Gas and Hydrogen Networks PE 729.303
  • 35. Wu H., Wang L., Wang X., Sun B., Zhao Z., Lee C., Liu F. (2018) The effect of turbulent jet induced by pre-chamber sparkplug on combustion characteristics of hydrogen-air pre-mixture. International Journal of Hydrogen Energy Volume 43, Issue 16, pg: 8116-8126. https://doi.org/10.1016/j.ijhydene.2018.02.155
  • 36. Pielecha I., Merkisz J., Urbański P., Gallas D., Andrych-Zalewska M. (2022) A Numerical Study of the Effect of Hydrogen Fuelled Turbulent Jet Ignition Engine. SAE Powertrains, Fuels & Lubricants Conference & Exhibition
  • 37. Benajes J., Novella R., Gomez-Soriano J., Barbery I., Libert C. (2021) Advantages of hydrogen addition in a passive pre-chamber ignited SI engine for passenger car applications. Int J Energy Res.; 45: pg: 13219– 13237. https://doi.org/10.1002/er.6648
  • 38. Pielecha I., Wislocki K., Cieslik W., Fiedkiewicz L. (2018) Prechamber selection for a two stage turbulent jet ignition of lean air-gas mixtures for better economy and emission. E3S Web Conf., 70 03010, DOI: https://doi.org/10.1051/e3sconf/20187003010
  • 39. Bunce, M., Peters, N., Weiss, U., Seba, B. (2021). Jet Ignition as an Enabling Technology for Stable, Highly Dilute Hydrogen Combustion in Off-Road and Heavy Duty Engines. In: Liebl, J., Beidl, C., Maus, W. (eds) Internationaler Motorenkongress 2021. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-35588-3_14
  • 40. Korn, T. (2019). The new highly efficient hydrogen internal combustion engine as ideal powertrain for the heavy-duty sector. In: Liebl, J., Beidl, C., Maus, W. (eds) Internationaler Motorenkongress 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26528-1_23
  • 41. Kapetanović, M., Núñez, A., van Oort, N., & Goverde, R. M. (2022). Analysis of hydrogen-powered propulsion system alternatives for diesel-electric regional trains. Journal of Rail Transport Planning & Management, 23, 100338. https://doi.org/10.1016/j.jrtpm.2022.100338
  • 42. Siadkowska, K., Barański, G., Sochaczewski, R., Wendeker, M. (2022). Experimental Investigation on Indicated Pressure and Heat Release for Direct Hydrogen Injection in a Dual Fuel Diesel Engine. Advances in Science and Technology Research Journal, 16(3), 54-66. https://doi.org/10.12913/22998624/149300
  • 43. Boretti A. (2011) Advances in hydrogen compression ignition internal combustion engines. International Journal of Hydrogen Energy, Volume 36, Issue 19, pg: 12601-12606, https://doi.org/10.1016/j.ijhydene.2011.06.148
  • 44. A. Boretti. (2011) Diesel-like and HCCI-like operation of a truck engine converted to hydrogen. International Journal of Hydrogen Energy, Volume 36, Issue 23, pg: 15382-15391, https://doi.org/10.1016/j.ijhydene.2011.09.005
  • 45. Sun Y., Anwar M., Hassan N.M.S. et al. (2021) A review of hydrogen technologies and engineering solutions for railway vehicle design and operations. Rail. Eng. Science 29, pg: 212–232. https://doi.org/10.1007/s40534-021-00257-8
  • 46. Pielecha I., Engelmann D., Czerwiński J., Merkisz M. (2022) Use of hydrogen fuel in drive systems of rail vehicles. Rail Vehicles, 1, pg: 10-19, https://doi.org/10.53502/RAIL-147725
  • 47. Satpathy S., Das S., Bhattacharyya B.K. (2020). How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors. Journal of Energy Storage, Volume 27, 101044, ISSN 2352-152X, https://doi.org/10.1016/j.est.2019.101044
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-650ea21c-cfef-40f4-946f-e82716c0c6aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.