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Abstract: The sliding system of machining centres often causes maintenance and process problems. Improper operation of the sliding 
system can result from wear of mechanical parts and drives faults. To detect the faulty operation of the sliding system, measurements  
of the torque of its servomotors can be used. Servomotor controllers can measure motor current, which can be used to calculate motor 
torque. For research purposes, the authors used a set of torque signals from the machining centre servomotors that were acquired over  
a long period. The signals were collected during a diagnostic test programmed in the machining centre controller and performed once  
per day. In this article, a method for detecting anomalies in torque signals was presented for the condition assessment of the machining 
centre sliding systems. During the research, an autoencoder was used to detect the anomaly, and the condition was assessed based  
on the value of the reconstruction error. The results indicate that the anomaly detection method using an autoencoder is an effective  
solution for detecting damage to the sliding system and can be easily used in a condition monitoring system. 
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1. INTRODUCTION 

Contemporary machining centres used in production are usu-
ally fully automated and complex mechatronic systems. Among 
many state-of-the-art systems that can be found in machining 
centres, sliding system plays a very important role. It is the me-
chanical system that enables the movement of the machine’s 
table or spindle along the axes (X, Y, Z) to position the cutting tool 
precisely relative to the workpiece. The sliding system in contem-
porary machining centres plays a critical role in ensuring the 
precision and accuracy of the machining process. Fig. 1 presents 
an exemplary sliding system of a multi-axis machining centre. 

 
Fig. 1. Diagram of the axis sliding systems of a double-spindle machining 

centre 

The sliding system is typically composed of several compo-
nents, as shown in Fig. 2. 

 
Fig. 2. Schematic diagram of the exemplary ball-screw drive system  

used in sliding system of machining centres 

According to the different publications [1, 2] and reports of 
maintenance services, common faults of sliding systems are as 
follows: 

 servomotor problems (bearings, electrical system); 

 increased resistance to movement; 

 decay of preload; 

 increased clearance; 

 ball screw damage; 

 bearing damage. 
Failures and damage to sliding systems can lead to serious 

problems and limitations in the operation of the machining centre, 
which can lead to loss of production, high repair costs and even 
the need to stop the production line. In recent years, much atten-
tion has been devoted to the development of various diagnostic 
methods for the sliding systems of the machining centre. Their 
goal is to enable the quick detection of failures and damages, 
which allows for quick intervention and minimising downtime. 
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1.1. Condition monitoring and diagnostics  
of sliding systems 

Condition monitoring of the sliding system in machining cen-
tres is an essential aspect of ensuring their operational efficiency 
and avoiding costly downtime due to unscheduled maintenance. 
There are various techniques available for condition monitoring, 
ranging from simple diagnostic signals from sensors and devices 
installed by the manufacturer to more sophisticated methods 
based on machine learning and deep learning. 

Sliding system of machining centres could be monitored and 
diagnosed in different ways. Very often sliding systems are as-
sessed indirectly by evaluating the quality of machining parts [3]. 
Direct assessment of the components of the sliding system can be 
performed using both off-line and on-line techniques, based on 
methods such as vibration analysis [4–7], laser interferometry [8, 
9], noise analysis [10, 11], visual inspection [12, 13], temperature 
monitoring [14, 15], acoustic emission monitoring [16, 17], motor 
current signature analysis [18, 19] and thermal imaging [20–22]. 

One of the most commonly used techniques for condition 
monitoring of sliding systems is vibration analysis. This technique 
involves analysing the vibration signals generated by the sliding 
system and extracting various parameters based on time, spectral 
and time–frequency analysis [23, 24]. These parameters can be 
used to indicate the operating condition and mechanical perfor-
mance of the sliding system. 

Another technique for condition monitoring is torque signal 
analysis [25]. This technique involves analysing the torque signal 
generated by the servomotors of the sliding system and their 
controllers. The servomotor controllers measure and monitor 
various operational parameters such as temperature or electric 
current, which can be used to calculate a torque signal that is 
useful for assessing the condition of sliding systems. Servo torque 
signal analysis methods are based on long-term trends and short-
term fluctuations, using signal models and the least squares 
method. 

Methods based on machine learning and deep learning are 
also being used for condition monitoring of sliding systems. These 
methods can extract data from many available sensors and then 
fuse them to predict the remaining useful life (RUL) [26]. Convolu-
tional neural networks consisting of two modules – feature extrac-
tor and classifier – are commonly used for this purpose [27–29]. 

More recently, deep adversarial networks and autoencoders 
[30, 31] have been used for fault detection and identification of 
sliding system. Deep adversarial networks have been used for 
RUL prediction with partial sensor malfunctions. Autoencoders 
have been used for fault detection and identification of sliding 
systems. 

Overall, condition monitoring of sliding systems in machining 
centres is an active research area, with ongoing efforts to develop 
more accurate and reliable techniques for fault detection and 
identification. These efforts are aided by the availability of data 
acquisition systems, advances in machine learning and deep 
learning and the development of decentralised federated transfer 
learning methodologies. 

2. SIGNALS OF SLIDING DRIVE TORQUE  
AND ITS ANALYSIS 

During the research, we analysed the torque signals that were 
collected by our industrial partner from December 2019 to Sep-

tember 2022. Torque was measured during diagnostic tests on 
the sliding system drives of the X, Y, Z and A axes of machining 
centres. For the purposes of our research, we considered a set of 
100,000 torque signals from 47 machining centres. The mainte-
nance service reported that no faults were detected in the sliding 
systems during the signal collection period. The machining centre 
diagnostic test was performed periodically, at least once a day. 
This test involved performing a sequence of axis drive move-
ments, during which the sliding travelled throughout the entire 
operating range and then returned to the initial position. Plots of 
exemplary torque signals for the X, Y, Z and A axes gathered 
during one of the diagnostic tests are presented in Figs. 3–6, 
respectively. We assumed that the torque signals acquired during 
the diagnostic test could be a source of information about the 
general condition of the entire sliding system, including the drive 
and sliding mechanisms. Therefore, we proposed a method for 
sliding fault detection based on these signals. 

  
Fig. 3. Torque signal of the sliding servo drives for the X-axis 

  
Fig. 4. Torque signal of the sliding servo drives for the Y-axis 

  
Fig. 5. Torque signal of the sliding servo drives for the Z-axis 
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Fig. 6. Torque signal of the sliding servo drives for the A-axis 

3. METHOD OF SLIDING FAULT DETECTION 

The general idea of the method is based on detecting anoma-
lies and deviations between the acquired torque signal and the 
model of the torque signal of a correctly operating sliding system. 
This is due to the fact that all collected signals represent good 
sliding system conditions. A flow of operations necessary to im-
plement and verify the method is presented in Fig. 7. First, torque 
signals from the servo drives of individual axes are acquired and 
stored in a database after each periodic sliding system diagnostic 
test. In the next step, the recorded data are processed and ana-
lysed. Based on the properly recorded time series, anomalies are 
detected, and the value of the status indicator is calculated. The 
status indicator can be used to build long-term time series for 
trend analysis purposes. In the case of sliding system degrada-
tion, an increase in the value of the status indicator should be 
expected. By using the upper limit control method, it will be possi-
ble to detect the change in sliding condition and warn the mainte-
nance services that additional inspection is necessary. The aim of 
this method is to improve efficiency, product quality and worker 
safety. 

3.1. Anomaly detection and status indicator calculation 

A crucial operation in the proposed method is the detection of 
anomalies in the torque signal and the calculation of the value of 
the sliding system condition indicator. There are several ways to 
detect anomalies in torque signals, such as model-based and 
residue analysis or feature extraction and neural models [32]. The 
second approach was tested during preliminary research and the 
results were very promising [33]. As part of the research continua-
tion, it was decided to verify the potential of another type of feed-
forward artificial neural network called an autoencoder. This diag-
nostic method, based on the torque signal and using an autoen-
coder, is particularly useful in cases where there is a lack of data 
regarding the fault or where such data are rare or costly to obtain. 
This method can help to detect subtle and complex problems in 
sliding system of machining centre in real-time during diagnostic 
tests, allowing maintenance personnel to quickly respond and 
prevent further issues. Additionally, this method enables the eval-
uation and tracking changes of sliding system condition. In con-
trast to traditional diagnostic methods, the proposed method 
utilises the ability to learn complex data patterns and has the 
potential to detect subtle or difficult-to-identify faults using tradi-
tional methods. This method can be used in automated diagnostic 
systems and does not require extensive knowledge of technical 

diagnostics, making it more accessible and easier to implement in 
industry. 

The threshold reconstruction autoencoder is the basic deep 
learning approach for anomaly detection. Autoencoders are used 
for an unsupervised learning process [34–36], while the devel-
oped method uses a supervised learning process [37], similar to a 
self-supervised process [38, 39]. The choice of the learning meth-
od was dictated by the unreliability of the assumption adopted in 
practice, which was revealed during the ablation studies [40]. The 
results of ablative studies showed the disadvantages of the meth-
od based on unsupervised learning compared to the applied 
method of supervised learning, which achieved higher perfor-
mance. In unsupervised learning, where the training data may 
contain anomalous examples, the autoencoder could also recon-
struct anomalies, which would reduce the ability to detect anoma-
lies based on reconstruction errors. The autoencoder, for a set of 
input values, creates a hidden representation from which to recre-
ate the batch data. The assumption of the developed diagnostic 
method is higher values of the reconstruction error for anomalous 
waveforms of the torque signal compared with normal waveforms. 

It was assumed that the autoencoder is trained on the time se-
ries of the torque signals represented by sliding in good condition. 
The result of the autoencoder operation is the value of the recon-
struction error, which can be treated as a status indicator. The 
application of autoencoder requires the preparation of input data. 
In the next step, torque signals were selected and pre-processed 
for further computation. 

 
Fig. 7. Method of diagnosing a sliding system 

3.2. Data preparation 

The set of torque signals acquired during diagnostic tests of a 
sliding system of machining centres required verification and pre-
processing. During the verification process, it was observed that 
some of the signals differed in the number of time points and time 
positions in relation to the beginning of the diagnostic test. Addi-
tionally, some signals were found to be cut off, most likely due to a 
lack of signal synchronisation. The cut-off signals were rejected. 
For the time-shifted signals, we developed a procedure to match 
them in time. In the next step, we divided the signals into two 
subsets: a subset of signals describing good conditions and a 
subset of signals with anomalies. To achieve this, a statistical 
analysis of the torque signal values was performed. The values of 
the torque variance were ordered in ascending order and 25% of 
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the lowest and highest values were treated as outliers with proba-
ble anomalies (Fig. 8). Further analysis of the signals connected 
with the outliers allowed us to identify a small number of signals 
where anomalies were clearly visible (Fig. 9). The remaining 50% 
of feature values were assumed to be connected with torque 
signals describing good sliding system conditions and could be 
used for autoencoder training. The outliers were used for autoen-
coder testing. The process of selecting torque signals based on 
their feature values is presented in Fig. 8. 

 
Fig. 8. Distribution of signal variance and way of values dividing into 

training (continuous line box) and testing (dotted line box) set 

 
Fig. 9. Selected anomalous signals 

The corrected torque signals, along with a small number of se-
lected anomalous signals, were marked for the prepared training 
and test data sets. Both torque signal values in both data sets 
were then normalised. Fig. 10 shows the normalised torque sig-
nals for both good operation and anomalous sliding system opera-
tion. However, the reason for the detected anomalies was not 
identified by the maintenance personnel. 

 
Fig. 10. Comparison of normalised torque signals for correct  

and anomalous sliding system operation 

3.3. Anomaly detection using autoencoder 

Pre-processed signals were utilised to train and test an auto-
encoder using a Python environment with TensorFlow and Keras 
libraries. A deep autoencoder with a symmetrical architecture was 
employed to detect anomalies. The autoencoder is composed of 
two components: an encoder and a decoder. The encoder part 
comprises three layers that utilise the Rectified Linear Unit (ReLU) 
activation function for ease of neural network optimisation. The 
decoder part also has three layers, with the ReLU activation func-
tion applied to the first two layers and the Sigmoid activation 
function applied to the final layer. The Adam optimisation method 
and Mean Absolute Error (MAE) [41] loss function were used for 
the autoencoder learning process, which was run only on the 
correct torque signals. A limited number of recorded anomalous 
torque signals were used to test the developed autoencoder 
model. The autoencoder model was trained over 30 epochs, and 
Fig. 11 shows the learning curve consisting of the training and 
validation loss. 

 
Fig. 11. Learning curve of the autoencoder model 

4.  ANOMALY DETECTION RESULTS AND DISCUSSION 

The developed autoencoder was tested on data that was not 
used during the training process. The model was able to deter-
mine the good condition of the machining centre sliding systems 
with an average accuracy of 99% for the selected threshold val-
ues. Fig. 12 shows the performance of the autoencoder model on 
an example of a correct torque signal (represented by the blue 
dotted line). The reconstructed torque signal is shown in red, while 
the reconstruction error is shown in light red. As one can see, 
error is very small and almost not visible on the plot. 

 

Fig. 12. Reconstruction error graph for a normal torque signal 
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In Fig. 13, the effect of the developed autoencoder model for 
an exemplary anomalous torque signal is shown. In this case, 
error is clearly visible and is close to 0.022. 

 
Fig. 13. Reconstruction error graph for an anomalous torque signal 

The developed autoencoder allows for the visual representa-
tion of the reconstruction error in diagrams. For the purpose of the 
developed diagnostic system, anomaly detection is based on the 
reconstruction error, for which the average reconstruction error  
for the training set and the test set was calculated, as shown  
in Fig. 14. 

 
Fig. 14. Reconstruction error graph for torque signals from training set 

(blue) and test set (orange) 

Based on the reconstruction error, graphs are generated to 
show the changes for the recorded time series. To make the 
system resistant to single isolated values of increased reconstruc-
tion error that may not be related to changes in the conditions of 
the sliding system drives, a moving average was used. This ena-
bles observation of the reconstruction error trend and prediction of 
the condition of the machining centre drives. Fig. 15 shows the 
reconstruction error for the time series from the training set. 

Fig. 16 shows the reconstruction error for the test set. Time 
series in the test set were ordered according to ascending order of 
variance values (Fig. 9) of outliers. 

 
Fig. 15. Reconstruction error changes for the training set 

 
Fig. 16. Reconstruction error changes for the test set 

Two threshold values were determined based on the analysis 
of the time series of reconstruction errors. The first threshold was 
determined by three standard deviations above the mean recon-
struction error. The diagnostic system warning state has been 
assigned to it. The warning status is information for the mainte-
nance department about the need to observe a given axis of the 
machining centre and control changes in its condition. The second 
was determined by six standard deviations above the mean re-
construction error. The fault condition of the machining centre 
servo drive was assigned to the second threshold. Exceeding the 
value of the second threshold determines the need for repair or 
accelerated maintenance of the machining centre sliding drive. 

5. CONCLUSIONS 

The use of servo drive torque signal measurement is an inter-
esting alternative to assess the condition of the machining centre 
sliding system. This article presents an anomaly detection method 
which uses the autoencoder and allows the assessment of the 
conditions of the sliding system based on the reconstruction error 
value, which could be treated as a sliding system condition indica-
tor. The autoencoder was trained based on the torque time series 
of the machining centre sliding systems. The training process was 
supervised, resembling a self-supervised process. Based on the 
selected error thresholds of the autoencoder reconstruction, it 
enables the assessment of the condition of the sliding system. 
The developed anomaly detection method enables the detection 
of registered anomalies in time series and the determination of the 
sliding system condition of the machining centre. Compared to the 
artificial neural network developed during earlier research, the 
method based on the autoencoder is characterised by greater 
efficiency and effectiveness in assessing the condition of sliding 
systems. The plans for future research include extending the 
ablative tests for the developed method in order to fully use its 
potential and capabilities. 

REFERENCES 

1. Kim Y, Bae H, Kim S, Vachtsevanos G. Fault Diagnosis of AC Servo 
Motor with Current Signals Based on Wavelet Decomposition and 
Template Matching Methods. IFAC Proceedings Volumes. 
2008;41(2):7239–44. 
https://doi.org/10.3182/20080706-5-kr-1001.01225 

2. Lee WG, Lee JW, Hong MS, Nam S-H, Jeon Y, Lee MG. Failure 
Diagnosis System for a Ball-Screw by Using Vibration Signals. Shock 
and Vibration. 2015;2015:1–9. https://doi.org/10.1155/2015/435870 
 



Damian Augustyn, Marek Fidali           DOI 10.2478/ama-2023-0051 

Method of Machining Centre Sliding System Fault Detection using Torque Signals and Autoencoder 

450 

3. Archenti A, Laspas T. Accuracy and Performance Analysis of Ma-
chine Tools. Precision Manufacturing. 2019;215–44.  
https://doi.org/10.1007/978-981-10-4938-5_7 

4. Jamil N, Hassan MF, Lim SK, Yusoff AR. Predictive maintenance for 
rotating machinery by using vibration analysis. Journal of Mechanical 
Engineering and Sciences. 2021 Sep 19;15(3):8289–99. 
https://doi.org/10.15282/jmes.15.3.2021.07.0651 

5. Polat K. The Fault Diagnosis based on Deep Long Short-Term 
Memory Model from the Vibration Signals in the Computer Numerical 
Control Machines. Journal of the Institute of Electronics and Com-
puter. 2020;2(1):72–92. https://doi.org/10.33969/jiec.2020.21006 

6. Desavale RG, Katiyar JK, Jagadeesha T. Vibrations Characteristics 
Analysis of Rotor-Bearings System Due to Surface Defects Based in 
CNC Machines. Recent Advances in Manufacturing, Automation, 
Design and Energy Technologies. 2021 Oct 12;705–10. 
https://doi.org/10.1007/978-981-16-4222-7_78 

7. Alghassi A, Yu Z, Farbiz F. Machine Performance Monitoring and 
Fault Classification using Vibration Frequency Analysis. 2020 Prog-
nostics and Health Management Conference (PHM-Besançon). 2020 
May; https://doi.org/10.1109/PHM-Besancon49106.2020.00009 

8. Józwik J, Kuric I, Sága M, Lonkwic P. Diagnostics of CNC Machine 
Tools in Manufacturing Process with Laser Interferometer Technolo-
gy. Manufacturing Technology. 2014 Mar 1;14(1):23–30. 
https://doi.org/10.21062/ujep/x.2014/a/1213-2489/mt/14/1/23 

9. Winarno A, Prayoga BT, Hendaryanto IA. Linear Motion Error Evalu-
ation of Open-Loop CNC Milling Using a Laser Interferometer. Acta 
Mechanica et Automatica. 2022 Mar 24;16(2):124–9. 
https://doi.org/10.2478/ama-2022-0016 

10. Józwik J, Wac-Włodarczyk A, Michałowska J, Kłoczko EngM. Moni-
toring of the Noise Emitted by Machine Tools in Industrial Conditions. 
Journal of Ecological Engineering. 2018 Jan 1;19(1):83–93. 
https://doi.org/10.12911/22998993/79447 

11. Madhusudana CK, Kumar H, Narendranath S. Fault Diagnosis of 
Face Milling Tool using Decision Tree and Sound Signal. Materials 
Today: Proceedings. 2018;5(5):12035–44. 
https://doi.org/10.1016/j.matpr.2018.02.178 

12. Sun WH, Yeh SS. Using the Machine Vision Method to Develop an 
On-machine Insert Condition Monitoring System for Computer Nu-
merical Control Turning Machine Tools. Materials. 2018 Oct 
14;11(10):1977. https://doi.org/10.3390/ma11101977 

13. Xing K, Liu X, Liu Z, Mayer JRR, Achiche S. Low-Cost Precision 
Monitoring System of Machine Tools for SMEs. Procedia CIRP. 
2021;96:347–52. https://doi.org/10.1016/j.procir.2021.01.098 

14. Zhou ZD, Gui L, Tan YG, Liu MY, Liu Y, Li RY. Actualities and De-
velopment of Heavy-Duty CNC Machine Tool Thermal Error Monitor-
ing Technology. Chinese Journal of Mechanical Engineering. 2017 
Jul 25;30(5):1262–81. https://doi.org/10.1007/s10033-017-0166-5 

15. Sudianto A, Jamaludin Z, Abdul Rahman AA, Novianto S, Muharrom 
F. Automatic Temperature Measurement and Monitoring System for 
Milling Process of AA6041 Aluminum Aloy using MLX90614 Infrared 
Thermometer Sensor with Arduino. Journal of Advanced Research in 
Fluid Mechanics and Thermal Sciences. 2021 Apr 30;82(2):1–14. 
https://doi.org/10.37934/arfmts.82.2.114 

16. Duro JA, Padget JA, Bowen CR, Kim HA, Nassehi A. Multi-sensor 
data fusion framework for CNC machining monitoring. Mechanical 
Systems and Signal Processing. 2016 Jan;66-67:505–20. 
https://doi.org/10.1016/j.ymssp.2015.04.019 

17. Goli A, Tirkolaee EB, Weber GW. An Integration of Neural Network 
and Shuffled Frog-Leaping Algorithm for CNC Machining Monitoring. 
Foundations of Computing and Decision Sciences. 2021 Mar 
1;46(1):27–42. https://doi.org/10.2478/fcds-2021-0003 

18. Zou Z, Lin Y, Lin D, Gu F, Ball AD. Online Tool Condition Monitoring 
of CNC Turnings Based on Motor Current Signature Analysis. 2021 
26th International Conference on Automation and Computing (ICAC). 
2021 Sep 2; https://doi.org/10.23919/ICAC50006.2021.9594219 

 
 
 

19. Aouabdi S, Taibi M, Bouras S, Boutasseta N. Using multi-scale 
entropy and principal component analysis to monitor gears degrada-
tion via the motor current signature analysis. Mechanical Systems 
and Signal Processing. 2017 Jun;90:298–316. 
https://doi.org/10.1016/j.ymssp.2016.12.027 

20. Choudhary A, Mian T, Fatima S. Convolutional neural network based 
bearing fault diagnosis of rotating machine using thermal images. 
Measurement. 2021 May;176:109196.  
https://doi.org/10.1016/J.MEASUREMENT.2021.109196 

21. Rotating machinery fault diagnosis based on convolutional neural 
network and infrared thermal imaging. Chinese Journal of Aero-
nautics. 2020 Feb 1;33(2):427–38.  
https://doi.org/10.1016/j.cja.2019.08.014 

22. Janssens O, Loccufier M, Van Hoecke S. Thermal Imaging and 
Vibration-Based Multisensor Fault Detection for Rotating Machinery. 
IEEE Transactions on Industrial Informatics. 2019 Jan;15(1):434–44. 
https://doi.org/10.1109/TII.2018.2873175 

23. Nayana BR, Geethanjali P. Analysis of Statistical Time-Domain 
Features Effectiveness in Identification of Bearing Faults From Vibra-
tion Signal. IEEE Sensors Journal. 2017 Sep 1;17(17):5618–25. 
https://doi.org/10.1109/JSEN.2017.2727638 

24. Moussa MA, Boucherma M, Khezzar A. A Detection Method for 
Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of 
the Sliding Discrete Fourier Transform. IEEE Transactions on Power 
Electronics. 2017 Jul;32(7):5560–72.  
https://doi.org/10.1109/TPEL.2016.2605821 

25. Zhang X, Zhang Q, Tan L, Xu G. Running state detection and per-
formance evaluation method for feed mechanism of numerical control 
machine. 2017 IEEE International Conference on Prognostics and 
Health Management (ICPHM). 2017 Jun;  
https://doi.org/10.1109/ICPHM.2017.7998332 

26. Li X, Xu Y, Li N, Yang B, Lei Y. Remaining Useful Life Prediction 
With Partial Sensor Malfunctions Using Deep Adversarial Networks. 
IEEE/CAA Journal of Automatica Sinica. 2023 Jan 1;10(1):121–34. 
https://doi.org/10.1109/JAS.2022.105935 

27. Zhang W, Wang Z, Li X. Blockchain-based decentralized federated 
transfer learning methodology for collaborative machinery fault diag-
nosis. Reliability Engineering & System Safety. 2023 Jan; 229: 
108885. https://doi.org/10.1016/j.ress.2022.108885 

28. Neupane D, Kim Y, Seok J, Hong J. CNN-Based Fault Detection for 
Smart Manufacturing. Applied Sciences. 2021 Dec 10;11(24):11732. 
https://doi.org/10.3390/APP112411732 

29. Sun Y, Li S. Bearing fault diagnosis based on optimal convolution 
neural network. Measurement. 2022 Feb;190:110702.  
https://doi.org/10.1016/J.MEASUREMENT.2022.110702 

30. Canbaz H, Polat K. Fault Detection of CNC Machines from Vibration 
Signals Using Machine Learning Methods. Artificial Intelligence and 
Applied Mathematics in Engineering Problems. 2020;365–74. 
https://doi.org/10.1007/978-3-030-36178-5_27 

31. Alghassi A. Generalized Anomaly Detection Algorithm Based on 
Time Series Statistical Features. Intelligent Systems Reference Li-
brary. 2021;177–200. https://doi.org/10.1007/978-3-030-67270-6_7 

32. Korbicz J, Kowalczuk Z, Kościelny JM, Cholewa W, editors. Fault 
Diagnosis. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. 
https://doi.org/10.1007/978-3-642-18615-8 

33. Augustyn D, Fidali M. Application of torque signal analysis of servo-
motors to assess of support system condition of industrial machining 
centre. Applied Condition Monitoring. 2023 

34. Provotar OI, Linder YM, Veres MM. Unsupervised Anomaly Detection 
in Time Series Using LSTM-Based Autoencoders. 2019 IEEE Inter-
national Conference on Advanced Trends in Information Theory 
(ATIT). 2019 Dec; https://doi.org/10.1109/ATIT49449.2019.9030505 

35. Bampoula X, Siaterlis G, Nikolakis N, Alexopoulos K. A Deep Learn-
ing Model for Predictive Maintenance in Cyber-Physical Production 
Systems Using LSTM Autoencoders. Sensors [Internet]. 2021 Jan 
1;21(3):972. https://doi.org/10.1109/ATIT49449.2019.9030505 

 
 



DOI 10.2478/ama-2023-0051               acta mechanica et automatica, vol.17 no.3 (2023) 

451 

36. Ahmad S, Styp-Rekowski K, Nedelkoski S, Kao O. Autoencoder-
based Condition Monitoring and Anomaly Detection Method for Ro-
tating Machines. 2020 IEEE International Conference on Big Data 
(Big Data). 2020 Dec 10; 
https://doi.org/10.1109/BigData50022.2020.9378015 

37. Lei Le, Andrew Patterson, Martha White. Supervised autoencoders: 
Improving generalization performance with unsupervised regulariz-
ers. In Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, 
NeurIPS 2018, 3-8 Dec 2018, Montréal, Canada 2018: 107-117. 

38. Tran DH, Nguyen VL, Nguyen H, Jang YM. Self-Supervised Learning 
for Time-Series Anomaly Detection in Industrial Internet of Things. 
Electronics. 2022 Jul 8;11(14):2146. 
https://doi.org/10.3390/electronics11142146 

39. Serradilla O, Zugasti E, Ramirez de Okariz J, Rodriguez J, Zurutuza 
U. Adaptable and Explainable Predictive Maintenance: Semi-
Supervised Deep Learning for Anomaly Detection and Diagnosis in 
Press Machine Data. Applied Sciences. 2021 Aug 11;11(16):7376. 
https://doi.org/10.3390/app11167376 

40. Amjad RA, Liu K, Geiger BC. Understanding Neural Networks and 
Individual Neuron Importance via Information-Ordered Cumulative 
Ablation. IEEE Transactions on Neural Networks and Learning Sys-
tems. 2022 Dec;33(12):7842–52. 
https://doi.org/10.1109/TNNLS.2021.3088685 

41. Jais IKM, Ismail AR, Nisa SQ. Adam Optimization Algorithm for Wide 
and Deep Neural Network. Knowledge Engineering and Data Sci-
ence. 2019 Jun 23;2(1):41.  
https://doi.org/10.17977/um018v2i12019p41-46 

Damian Augustyn:  https://orcid.org/0000-0002-4896-4090 

Marek Fidali:  https://orcid.org/0000-0002-3667-5582 

 

This work is licensed under the Creative Commons 

BY-NC-ND 4.0 license. 

 

https://orcid.org/0000-0002-4896-4090
https://orcid.org/0000-0002-3667-5582
https://orcid.org/0000-0002-4896-4090
https://orcid.org/0000-0002-3667-5582

