Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to assess the groundwater potential zones (GWPZ) in northern Morocco’s Upper Oum Er-Rbia Basin (UOER). In such a semi-arid context, groundwater resources are crucial to sustaining essential human activities, but they are under stress due to increased overuse and climate change. This investigation utilized remote sensing in a GIS framework along with a multi-criteria decision analysis (MCDA) technique using the analytic hierarchy process (AHP) for the first time in this region. Ten thematic layers were created, representing the most significant parameters, which were then weighted and overlaid. The output map shows five levels of potential: very low, low, medium, high, and very high, covering 12%, 19%, 20%, 27%, and 22% of the basin area, respectively. Comparing the assessment results to the borehole yield, the AUC-ROC curve showed a value of 84.5%, which testifies to the excellent performance of the methodology used. Of the 10 criteria used, lithology was shown to be the most significant factor, followed by LULC, slope, and geomorphology. The study results offer an extensive insight into the hydrogeological potential of the UOER basin. These findings are essential for decision-makers and encourage the efficient utilization of groundwater resources, thus supporting broader objectives of sustainable development.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
27--42
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Data Science for Sustainable Earth Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
autor
- Laboratoire d’Ecologie Fonctionnelle et Génie de l’Environnement, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
autor
- Data Science for Sustainable Earth Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
- a.elaloui@usms.ma
autor
- Data Science for Sustainable Earth Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
autor
- Data Science for Sustainable Earth Laboratory, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
autor
- Laboratoire d’Ecologie Fonctionnelle et Génie de l’Environnement, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
Bibliografia
- 1. Abdalla F., Moubark K., Abdelkareem M. 2020. Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena area, Upper Egypt. Journal of Taibah University for Science, 14(1), 1350–1362. https://doi.org/10.1080/16583655.2020.1822646
- 2. Abdekareem M., Al-Arifi N., Abdalla F., Mansour A., El-Baz F. 2022. Fusion of Remote Sensing Data Using GIS-Based AHP-Weighted Overlay Techniques for Groundwater Sustainability in Arid Regions. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137871
- 3. Abdullahi A., Jothimani M., Getahun E., Gunalan J., Abebe A. 2023. Assessment of potential groundwater Zones in the drought-prone Harawa catchment, Somali region, eastern Ethiopia using geospatial and AHP techniques. Egyptian Journal of Remote Sensing and Space Science, 26(3), 628–641. https://doi.org/10.1016/j.ejrs.2023.07.005
- 4. Achu A.L., Thomas J., Reghunath R. 2020. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). In Groundwater for Sustainable Development, 10. https://doi.org/10.1016/j.gsd.2020.100365
- 5. Al Garni H.Z., Awasthi A. 2017. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206(September), 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024
- 6. Allafta H., Opp C., Patra S. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the shatt AlArab Basin. Remote Sensing, 13(1), 1–28. https://doi.org/10.3390/rs13010112
- 7. Anusha B.N., Pradeep Kumar B., Rajasekhar M., Raghu Babu K. 2022. Delineation of groundwater potential zones using geospatial and MCDM approaches in urban areas of Anantapur District, AP, India. Urban Climate, 46(March), 101341. https://doi.org/10.1016/j.uclim.2022.101341
- 8. Arulbalaji P., Padmalal D., Sreelash K. 2019. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: a case study from Southern Western Ghats, India. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-38567-x
- 9. Aslan V., and Çelik R. 2021. Integrated gis-based multi-criteria analysis for groundwater potential mapping in the euphrates’s sub-basin, harran basin, turkey. Sustainability (Switzerland), 13(13). https://doi.org/10.3390/su13137375
- 10. Bamoumen H., Aarab E.M., Soulaimani A. 2008. Tectono-Sedimentary and magmatic evolution of the Upper Visean basins of Azrou-Khénifra and eastern Jebilet (Moroccan Meseta). Estudios Geologicos, 64(2), 107–122. https://doi.org/10.3989/egeol.08642.020
- 11. Bouabdelli M., and Piqué A. 1996. Du bassin sur décrochement au bassin d’avant-pays: Dynamique du bassin d’Azrou-Khénifra (Maroc hercynien central). Journal of African Earth Sciences, 23(2), 213–224. https://doi.org/10.1016/S0899-5362(96)00063-2
- 12. Castillo J.L.U., Cruz D.A.M., Leal J.A.R., Vargas J.T., Tapia S.A.R., Celestino A.E.M. 2022. Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water (Switzerland), 14(13). https://doi.org/10.3390/w14132138
- 13. Chaminé H.I., Pereira A.J.S.C., Teodoro A.C., Teixeira J. 2021. Remote sensing and GIS applications in earth and environmental systems sciences. SN Applied Sciences, 3(12), 870. https://doi.org/10.1007/s42452-021-04855-3
- 14. Chaponniere A., Smakhtin V. 2006. A Review of Climate Change Scenarios and Preliminary Rainfall Trend Analysis in the Oum Er Rbia Basin, Morocco. 1–16.
- 15. Chaudhry A.K., Kumar K., Alam M.A. 2021. Mapping of groundwater potential zones using the fuzzy analytic hierarchy process and geospatial technique. Geocarto International, 36(20), 2323–2344. https://doi.org/10.1080/10106049.2019.1695959
- 16. Das B., and Pal S.C. 2019. Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India. HydroResearch, 2, 21–30. https://doi.org/10.1016/j.hydres.2019.10.001
- 17. De Reu J., Bourgeois J., Bats M., Zwertvaegher A., Gelorini V., De Smedt P., Chu W., Antrop M., De Maeyer P., Finke P., Van Meirvenne M., Verniers J., Crombé P. 2013. Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186, 39– 49. https://doi.org/10.1016/j.geomorph.2012.12.015
- 18. Deshmukh M.M., Elbeltagi A., Kouadri S. 2022. Climate Change Impact on Groundwater Resources in Semi-arid Regions. In Climate Change Impact on Groundwater Resources (pp. 9–23). Springer International Publishing. https://doi.org/10.1007/978-3-031-04707-72
- 19. Duguma T.A. 2023. RS and GIS analysis of the groundwater potential zones in the Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 46(October 2021), 101344. https://doi.org/10.1016/j.ejrh.2023.101344
- 20. El Jazouli A., Barakat A., Khellouk R. 2019. GISmulticriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6(1). https://doi.org/10.1186/s40677-019-0119-7
- 21. FAO-UNESCO. 1977. FAO-UNESCO soil map of the world, 1:5000000. Africa. Fao Soil Bulletin, VI(1), 299.
- 22. FAO & IIASA. 2023. Harmonized World Soil Database version 2.0. Rome and Laxenburg. https://doi.org/10.4060/cc3823en
- 23. Faouzi E., Arioua A., Hssaisoune M., Boudhar A., Elaloui A., Karaoui I. 2022. Sensitivity analysis of CN using SCS-CN approach, rain gauges and TRMM satellite data assessment into HEC-HMS hydrological model in the upper basin of Oum Er Rbia, Morocco. Modeling Earth Systems and Environment, 8(4), 4707– 4729. https://doi.org/10.1007/s40808-022-01404-8
- 24. Ghosh A., Adhikary P.P., Bera B., Bhunia G.S., Shit P.K. 2022. Assessment of groundwater potential zone using MCDA and AHP techniques: case study from a tropical river basin of India. Applied Water Science, 12(3), 1–22. https://doi.org/10.1007/s13201-021-01548-5
- 25. Hssaisoune M., Bouchaou L., Sifeddine A., Bouimetarhan I., Chehbouni A. 2020. Moroccan groundwater resources and evolution with global climate changes. Geosciences (Switzerland), 10(2). https://doi.org/10.3390/geosciences10020081
- 26. Hussein A.A., Govindu V., Nigusse A.G.M. 2017. Evaluation of groundwater potential using geospatial techniques. Applied Water Science, 7(5), 2447– 2461. https://doi.org/10.1007/s13201-016-0433-0
- 27. Ifediegwu S.I. 2022. Assessment of groundwater potential zones using GIS and AHP techniques: a case study of the Lafia district, Nasarawa State, Nigeria. Applied Water Science, 12(1), 1–17. https://doi.org/10.1007/s13201-021-01556-5
- 28. Kumar M., Singh P., Singh P. 2023. Machine learning and GIS-RS-based algorithms for mapping the groundwater potentiality in the Bundelkhand region, India. Ecological Informatics, 74, 101980. https://doi.org/10.1016/j.ecoinf.2023.101980
- 29. Lentswe G.B., and Molwalefhe L. 2020. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. Journal of Hydrology: Regional Studies, 28(Jan), 100674. https://doi.org/10.1016/j.ejrh.2020.100674
- 30. Machiwal D., Jha M.K., Mal B.C. 2011. Assessment of groundwater potential in a Semi-Arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25(5), 1359– 1386. https://doi.org/10.1007/s11269-010-9749-y
- 31. Mallick J., Khan R.A., Ahmed M., Alqadhi S.D., Alsubih M., Falqi I., Hasan M.A. 2019. Modeling groundwater potential zone in a Semi-Arid region of Aseer using Fuzzy-AHP and geoinformation techniques. Water, 11(12), 2656. https://doi.org/10.3390/w11122656
- 32. Mandal K.K., Ranjan A., Dharanirajan K. 2021. Delineation of groundwater potential zones (GWPZ) of Port Blair, Andaman Islands, India, using multi influencing factors (MIF) method and geospatial techniques. Remote Sensing Applications: Society and Environment, 24(September), 100631. https://doi.org/10.1016/j.rsase.2021.100631
- 33. Mandal P., Saha J., Bhattacharya S., Paul S. 2021. Delineation of groundwater potential zones using the integration of geospatial and MIF techniques: a case study on Rarh region of West Bengal, India. Environmental Challenges, 5(November), 100396. https://doi.org/10.1016/j.envc.2021.100396
- 34. Masroor M., Sajjad H., Kumar P., Saha T.K., Rahaman M.H., Choudhari P., Kulimushi L.C., Pal S., Saito O. 2023. Novel ensemble machine learning modeling approach for groundwater potential mapping in Parbhani District of Maharashtra, India. Water, 15(3), 419. https://doi.org/10.3390/w15030419
- 35. Mays L.W. 2013. Groundwater resources sustainability: past, present, and future. Water Resources Management, 27(13), 4409–4424. https://doi.org/10.1007/s11269-013-0436-7
- 36. Megdal S.B. 2018. Invisible water: the importance of good groundwater governance and management. Npj Clean Water, 1(1), 1–5. https://doi.org/10.1038/s41545-018-0015-9
- 37. Mengistu T.D., Chung I.M., Kim M.G., Chang S.W., Lee J.E. 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in East African Watershed. Water (Switzerland), 14(13). https://doi.org/10.3390/w14132068
- 38. Moore I.D., Grayson R.B., Ladson A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103
- 39. Morgan H., Madani A., Hussien H.M., Nassar T. 2023. Using an ensemble machine learning model to delineate groundwater potential zones in desert fringes of East Esna-Idfu area, Nile valley, Upper Egypt. Geoscience Letters, 10(1). https://doi.org/10.1186/s40562-023-00261-2
- 40. Muavhi N., Thamaga K.H., Mutoti M.I. 2022. Mapping groundwater potential zones using relative frequency ratio, analytic hierarchy process and their hybrid models: case of Nzhelele-Makhado area in South Africa. Geocarto International, 37(21), 6311–6330. https://doi.org/10.1080/10106049.2021.1936212
- 41. Muñoz Sabater J. (Copernicus C.C.S. (C3S) C.D.S. (CDS)). 2019. ERA5-Land monthly averaged data from 1981 to present. https://doi.org/10.24381/cds.68d2bb30
- 42. Oudra I., and Talks P. 2019. FAO/WB Cooperative Programme : Nationally Determined Contribution Support on the Groundwater, Energy and Food Security Nexus in Morocco.
- 43. Ouma Y.O., and Tateishi R. 2014. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. https://doi.org/10.3390/w6061515
- 44. Ozegin K.O., Ilugbo S.O., Ogunseye T.T. 2023. Groundwater exploration in a landscape with heterogeneous geology: An application of geospatial and analytical hierarchical process (AHP) techniques in the Edo north region, in Nigeria. Groundwater for Sustainable Development, 20(October 2022), 100871. https://doi.org/10.1016/j.gsd.2022.100871
- 45. Patra S., Mishra P., Mahapatra S.C. 2018. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161
- 46. Pradhan R.M., Guru B., Pradhan B., Biswal T.K. 2021. Integrated multi-criteria analysis for groundwater potential mapping in Precambrian hard rock terranes (North Gujarat), India. Hydrological Sciences Journal, 66(6), 961–978. https://doi.org/10.1080/02626667.2021.1906427
- 47. Radulović M., Brdar S., Mesaroš M., Lukić T., Savić S., Basarin B., Crnojević V., Pavić D. 2022. Assessment of groundwater potential zones using GIS and fuzzy AHP techniques – A case study of the Titel mMunicipality (Northern Serbia). ISPRS International Journal of Geo-Information, 11(4). https://doi.org/10.3390/ijgi11040257
- 48. Rahman M.M., Althobiani F., Shahid S., Virdis S.G.P., Kamruzzaman M., Rahaman H., Momin M.A., Hossain M.B., Ghandourah E.I. 2022. GIS and remote sensing-based multi-criteria analysis for delineation of groundwater potential zones: A case study for industrial zones in Bangladesh. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116667
- 49. Rahmati O., Nazari Samani A., Mahdavi M., Pourghasemi H.R., Zeinivand H. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/s12517-014-1668-4
- 50. Saaty T.L. 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill International Book Company. https://books.google.co.ma/books?id=Xxi7AAAAIAAJ
- 51. Saaty T.L. 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I
- 52. Salem A., Abduljaleel Y., Dezső J., Lóczy D. 2023. Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary. Scientific Reports, 13(1), 1–16. https://doi.org/10.1038/s41598-022-21259-4
- 53. Saravanan S., Saranya T., Jennifer J.J., Singh L., Selvaraj A., Abijith D. 2020. Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India. Arabian Journal of Geosciences, 13(15). https://doi.org/10.1007/s12517-020-05712-0
- 54. Shailaja G., Kadam A.K., Gupta G., Umrikar B.N., Pawar N.J. 2019. Integrated geophysical, geospatial and multiple-criteria decision analysis techniques for delineation of groundwater potential zones in a semiarid hard-rock aquifer in Maharashtra, India. Hydrogeology Journal, 27(2), 639–654. https://doi.org/10.1007/s10040-018-1883-2
- 55. Shao Z., Huq M.E., Cai B., Altan O., Li Y. 2020. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environmental Modelling and Software, 134, 104868. https://doi.org/10.1016/j.envsoft.2020.104868
- 56. Singha S.S., Pasupuleti S., Singha S., Singh R., Venkatesh A.S. 2021. Analytic network process based approach for delineation of groundwater potential zones in Korba district, Central India using remote sensing and GIS. Geocarto International, 36(13), 1489–1511. https://doi.org/10.1080/10106049.2019.1648566
- 57. Sutradhar S., Mondal P., Das N. 2021. Delineation of groundwater potential zones using MIF and AHP models: A micro-level study on Suri Sadar Sub-Division, Birbhum District, West Bengal, India. Groundwater for Sustainable Development, 12(March 2020), 100547. https://doi.org/10.1016/j.gsd.2021.100547
- 58. Taher M., Mourabit T., Etebaai I., Cherkaoui Dekkaki H., Amarjouf N., Amine A., Abdelhak B., Errahmouni A., Azzouzi S. 2023. Identification of Groundwater Potential Zones (GWPZ) Using Geospatial Techniques and AHP Method: a Case Study of the Boudinar Basin, Rif Belt (Morocco). Geomatics and Environmental Engineering, 17(3), 83–105. https://doi.org/10.7494/geom.2023.17.3.83
- 59. Thapa R., Gupta S., Gupta A., Reddy D. V., Kaur H. 2018. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeology Journal, 26(3), 899– 922. https://doi.org/10.1007/s10040-017-1683-0
- 60. Tiwari A., Ahuja A., Vishwakarma B.D., Jain K. 2019. Groundwater Potential Zone (GWPZ) for Urban Development Site Suitability Analysis in Bhopal, India. Journal of the Indian Society of Remote Sensing, 47(11), 1793–1815. https://doi.org/10.1007/s12524-019-01027-0
- 61. Trabelsi F., Bel Hadj Ali S., Lee S. 2022. Comparison of Novel Hybrid and Benchmark Machine Learning Algorithms to Predict Groundwater Potentiality: Case of a Drought-Prone Region of Medjerda Basin, Northern Tunisia. Remote Sensing, 15(1), 152. https://doi.org/10.3390/rs15010152
- 62. Upwanshi M., Damry K., Pathak D., Tikle S., Das S. 2023. Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches. Urban Climate, 48(January), 101415. https://doi.org/10.1016/j.uclim.2023.101415
- 63. Weiss a. 2001. Topographic position and landforms analysis. Poster Presentation, ESRI User Conference, San Diego, CA, 64, 227–245. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Topographic+Position+and+Landforms+Analysis#0
- 64. World Bank Group. 2017. Managing Urban Water Scarcity in Morocco (Issue November).
- 65. World Bank Group. 2021. Climate Risk Country Profile: Morocco. In The World Bank Group (WBG).
- 66. Yadav B., Malav L.C., Jangir A., Kharia S.K., Singh S. V., Yeasin M., Nogiya M., Meena R.L., Meena R.S., Tailor B.L., Mina B.L., Alhar M.S.O., Jeon B.-H., Cabral-Pinto M.M.S., Yadav K.K. 2023. Application of analytical hierarchical process, multi-influencing factor, and geospatial techniques for groundwater potential zonation in a semi-arid region of western India. Journal of Contaminant Hydrology, 253(December 2022), 104122. https://doi.org/10.1016/j.jconhyd.2022.104122
- 67. Yesilnacar E., and Topal T. 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3–4), 251–266. https://doi.org/10.1016/j.enggeo.2005.02.002
- 68. Yifru B.A., Mitiku D.B., Tolera M.B., Chang S.W., Chung I.-M. 2020. Groundwater Potential Mapping Using SWAT and GIS-Based Multi-Criteria Decision Analysis. KSCE Journal of Civil Engineering, 24(8), 2546–2559. https://doi.org/10.1007/s12205-020-0168-1
- 69. Zamani M.G., Moridi A., Yazdi J. 2022. Groundwater management in arid and semi-arid regions. Arabian Journal of Geosciences, 15(4), 362. https://doi.org/10.1007/s12517-022-09546-w
- 70. Zanaga D., Van De Kerchove R., Daems D., De Keersmaecker W., Brockmann C., Kirches G., Wevers J., Cartus O., Santoro M., Fritz S., Lesiv M., Herold M., Tsendbazar N.E., Xu P., Ramoino F., Arino O. 2022. ESA WorldCover 10 m 2021 v200. In Meteosat Second Generation Evapotranspiration (MET). https://doi.org/10.5281/ZENODO.7254221
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6508ebf6-1e14-4f06-929f-b24d001dba47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.