PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study of power circuit topologies for two-wing armature electromagnetic launcher

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the performance characteristics of a Two-Wing Armature Electromagnetic Launcher under various power circuit configurations. The TWAEL model able to enhances magnetic flux density, a maximum of 2.3383 T, significantly outperforming traditional quadrupole railguns. This increased magnetic flux density contributes to superior acceleration and velocity capabilities. The study reveals that the SCR-controlled inductive energy storage circuit offers over 100 times the force output compared to a switched RC circuit, highlighting its potential for optimizing projectile performance. The paper provides critical insights for different power circuit configuration for electromagnetic launchers. The findings emphasize the integration of power circuit designs to enhance the efficiency, acceleration, and overall effectiveness of electromagnetic propulsion systems. This work lays the groundwork for future advancements in electromagnetic launcher technology, aiming to improve military, aerospace, and industrial applications.
Twórcy
autor
  • GITAM deemed to be University, Visakhapatnam, Andhra Pradesh, India
  • GITAM deemed to be University, Visakhapatnam, Andhra Pradesh, India
Bibliografia
  • 1. Petrescu, R.V.V., Aversa, R., Apicella, A., and Petrescu, F.I.T. Modern propulsions for the aerospace industry. American Journal of Engineering and Applied Sciences 2018; 11(2): 715–755. https://doi.org/10.3844/ajeassp.2018.715.755.
  • 2. Rovey, J., Lyne, C.T., Mundahl A.J., et al. Review of chemical-electric multimode space propulsion. AIAA Propulsion and Energy 2019 Forum. 2019. https://doi.org/10.2514/6.2019-4169.
  • 3. Powell, J., and Maise, G. StarTram: The Magnetic Launch Path to Very Low Cost, Very High Volume Launch to Space. 2008 14th Symposium on Electromagnetic Launch Technology. 2008. https://doi.org/10.1109/elt.2008.76.
  • 4. Praneeth, S.R.N., Chaudhuri, D., Chatterjee, S., et al. Department of Electrical Engineering, IIT Delhi, New Delhi, India. A novel electromagnetic launcher configuration with improved system and barrel efficiencies. IEEE Transactions on Plasma Science 2020; 48(10): 3429–3434. https://doi.org/10.1109/tps.2020.3018746.
  • 5. Felber, F. Centrifugal projectile launchers. IEEE Transactions on Magnetics 1982; 18(1): 209–212. https://doi.org/10.1109/tmag.1982.1061770.
  • 6. Engel, T.G., and Timpson, E.J. A general theory of DC electromagnetic launchers. Journal of Applied Physics 2015; 118(8). https://doi.org/10.1063/1.4928809.
  • 7. Engel, T.G., Neri, J.M. and Veracka, M.J. Solid-projectile helical coil electromagnetic launcher. 2007 16th IEEE International Pulsed Power Conference. 2008; 2. IEEE, https://doi.org/10.1109/ppps.2007.4346319.
  • 8. Lv, Qing-ao, Li, Z.-Y., Xie, S.-S., et al. A practical electromagnetic launcher concept-part I: Primary structure design and armature optimal simulation. 2012 16th International Symposium on Electromagnetic Launch Technology. IEEE, 2012. https://doi.org/10.1109/eml.2012.6325092.
  • 9. Cowan, M., et al. Exploratory development of the reconnection launcher 1986–90. IEEE Transactions on Magnetics 1991; 27(1): 563–567. https://doi.org/10.1109/20.101095.
  • 10. Chun, Z., Jiyan, Z., Xiaopeng, L., et al. Study of a three-stage reconnection electromagnetic launcher using triggered vacuum switches. IEEE transactions on magnetics 2006; 43(1): 219–222. https://doi.org/10.1109/tmag.2006.887717.
  • 11. Lv, Q.-a., Li, Z.-Y., Lei, B., et al. Primary structural design and optimal armature simulation for a practical electromagnetic launcher. IEEE Transactions on Plasma Science 2013; 41(5): 1403–1409. https://doi.org/10.1109/tps.2013.2251679.
  • 12. Shi-Cao, Z., Song Z.-F., and Zhoa X.-P. A potential approach to launch hypervelocity projectiles up to 10 km/s based on two-stage gas gun facilities. Procedia Engineering 2013; 58: 98–109. https://doi.org/10.1016/j.proeng.2013.05.013.
  • 13. Guangcheng, F., Wang, Y., Xu, Q., et al. Design and analysis of a novel three-coil reconnection electromagnetic launcher. IEEE transactions on plasma science 2018; 47(1): 814–820. https://doi.org/10.1109/tps.2018.2874287.
  • 14. Daldaban, F., and Vekil S. The optimization of a projectile from a three-coil reluctance launcher. Turkish Journal of Electrical Engineering and Computer Sciences 2016; 24(4): 2771–2788. https://doi.org/10.3906/elk-1404-18.
  • 15. Cnare, E.C., Widner, M.M. and Duggin, B.W. A 10-stage reconnection demonstration launcher. IEEE transactions on magnetics 1991; 27(1): 644–646. https://doi.org/10.1109/20.101110.
  • 16. Liyi, L., Li X., and Hu Y. New application of reconnection electromagnetic launch (RCEML) with plate projectile: space application. International Conference on Recent Advances in Space Technologies, 2003. RAST’03. Proceedings of. IEEE, 2003. https://doi.org/10.1109/rast.2003.1303954.
  • 17. Zhu, Y., Wang, Y., Yan, Z., et al. Multipole field electromagnetic launcher. IEEE transactions on magnetics 2010; 46(7): 2622–2627. https://doi.org/10.1109/tmag.2010.2044416.
  • 18. Yan, Z., Long, X., Lu, F., et al. Study of single-stage double-armature multipole field electromagnetic launcher. IEEE Transactions On Plasma Science 2017; 45(8): 2381–2386. https://doi.org/10.1109/tps.2017.2716421.
  • 19. Liu, S., Miao, H., Guan, J., Ciu, M. Investigation of electromagnetic characteristic in series-connected augmented quadrupole rail launcher. IEEE Transactions on Plasma Science 2020; 48(1): 299–304. https://doi.org/10.1109/tps.2019.2960023.
  • 20. Yadong, Z., Gang, X., Yujia, G., et al. Armature structure research of a synchronous induction coil launcher. IEEE Transactions on Plasma Science 2017; 45(7): 1574–1578. https://doi.org/10.1109/tps.2017.2706270.
  • 21. Musolino, A., Raugi, M., Rizzo, R., Tripodi, E. Modeling of the gyroscopic stabilization in a traveling-wave multipole field electromagnetic launcher via an analytical approach. IEEE Transactions on Plasma Science 2015; 43(5): 1236–1241. https://doi.org/10.1109/tps.2015.2403774.
  • 22. Musolino, A., Rocco R., and Ernesto T. The double-sided tubular linear induction motor and its possible use in the electromagnetic aircraft launch system. IEEE Transactions on Plasma Science 2013; 41(5): 1193–1200. https://doi.org/10.1109/tps.2013.2244915.
  • 23. Musolino, A., Rocco R., and Ernesto T. Analytical model of a travelling wave multipole field electromagnetic launcher. 2012 16th International Symposium on Electromagnetic Launch Technology. IEEE, 2012. https://doi.org/10.1109/eml.2012.6325051.
  • 24. ANSYS. (2023), ANSYS sys. Accessed: 2023.
  • 25. Srichandan, K., and Pasumarthi, M.R. Computations of magnetic forces in multipole field electromagnetic launcher. 1 Jun. 2019; 4(3), 761. https://doi.org/10.33889//ijmems.2019.4.3-059.
  • 26. Srichandan, K., Thotakura, S., Pasumarthi, M.R., et al. A novel type coil-multipole field hybrid electromagnetic launching system. 1 Dec. 2019; 15: 102786. https://doi.org/10.1016/j.rinp.2019.102786.
  • 27. Manohar, K., and Srichandan, K. Analysis of quadrupole magnetic field reluctance-based launcher with different coil switching patterns. 1 May. 2023; 51(5): 1370–1376. https://doi.org/10.1109/tps.2023.3266515.
  • 28. Manohar, K., Srichandan, K. A Comprehensive design and simulation of quadrupole electromagnetic linear systems for precise positioning in aerospace. 11 Jun. 2024; 19(6): https://doi.org/10.26782/jmcms.2024.06.00006.
  • 29. Kondamudi, S., and Thotakura, S. Design of multi-stage dodecapole electrical propelling system (DEPS) and its possible use in the hyperloop transportation. In Smart and Intelligent Systems: Proceedings of SIS 2021, 2022; 499–511. Springer Singapore.
  • 30. Thotakura, S., Srichandan, K., and Rao, P.M. A novel configuration of multi-stage outrunner electromagnetic launching for aircraft catapult system. In Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE), 2020; 2: 364–372. Springer International Publishing.
  • 31. Kolm, H., Mongeau, P. and Williams, F. Electromagnetic launchers. IEEE Transactions on Magnetics, 1980; 16(5): 719–721.
  • 32. McNab, I.R., Stefani, F., Crawford, M., Erengil, M., Persad, C., Satapathy, S., Vanicek, H., Watt, T. and Dampier, C. Development of a naval railgun. IEEE Transactions on Magnetics, 2005; 41(1), 206–210.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65017891-18cf-425e-ae81-54b710a1e9f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.