PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effectiveness of Absorbing Microwaves by the Multimaterial Sodium Silicate Base Sand - PLA (Polylactide) Mould Wall Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper presented are results of a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened sodium silicate base sands (SSBS) prepared of high-silica base sand and a PLA (Polylactide) 3D-prited (3DP) mould walls. Measurements of power loss of microwave radiation (Pin) expressed by a total of absorbed power (Pabs), output power (Pout) and reflected power (Pref) were carried-out on a stand of semiautomatic microwave slot line for determining balance of microwave power emitted into selected multimaterial systems. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands and prepared by fused deposition modelling (FDM) 5 mm polylactide (PLA) walls with grid infill density from 25% to c.a. 100% served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological importance for microwave manufacture of high quality casting sand moulds and cores in possibility of use 3D-printed mould tools and core boxes. It was found that apparent density of SSBS placed in a waveguide with PLA walls influences parameters of power output (Pout) and power reflected (Pref). The PLA wall position and grid infill density were identified to have a limited effect on effectiveness of absorbing microwaves (Pabs).
Rocznik
Strony
30--37
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Bibliografia
  • [1] Stachowicz, M., Opyd, B., Granat, K., & Markuszewska, K. (2014). Effect of electrical properties of materials on effectiveness of heating their systems in microwave field. Archives of Foundry Engineering. 14(2), 111-114. DOI:10.2478/afe-2014-0047.
  • [2] Stachowicz M., Mażulis J., Granat K. & Janus A. (2014). Influence of molding and core sands matrix on the effectiveness of the microwaves absorption. Metalurgija. 53(3), 317-319. ISSN 0543-5846.
  • [3] Stachowicz M. & Granat K. (2013). Microwave absorption by unhardened molding sands with water-glass. Archives of Foundry Engineering. 13(spec.1), 169-174. (in Polish).
  • [4] Stachowicz, M. (2016). Effect of sand base grade and density of moulding sands with sodium silicate on effectiveness of absorbing microwaves. Archives of Foundry Engineering, 16(3), 103-108. DOI:10.1515/afe-2016-0059.
  • [5] Kaczmarska, K., Grabowska, B., Spychaj, T., Zdanowicz, M., Sitarz, M., Bobrowski, A. & Cukrowicz, S. (2018). Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 199, 387-393. https://doi.org/10.1016/j.saa.2018.03.047.
  • [6] Puzio, S., Kamińska, J., Major-Gabryś, K., Angrecki, M. & Hosadyna-Kondracka, M. (2019). Microwave-Hardened Moulding Sands with Hydrated Sodium Silicate for Modified Ablation Casting. Archives of Foundry Engineering. (2), 91-96. DOI:10.24425/afe.2019.127122.
  • [7] Solonenko, L., Repiakh, S., Uzlov, K. & Kimstach, T. (2020). Crushing character of sand-sodium-silicate mixtures structured by steam-microwave treatment. Odes'kyi Politechnichnyi Universytet. Pratsi. 3(62), 5-14. DOI:10.15276/opu.3.62.2020.01.
  • [8] Major-Gabryś, K., Hosadyna-Kondracka, M., Grabarczyk, A. & Kamińska, J. (2019). Selection of hardening technology of moulding sand with hydrated sodium silicate binder devoted to aluminum alloys ablation casting. Archives of Metallurgy and Materials. 64(1), 359-364. DOI:10.24425/amm.2019.126260 ; ISSN 1733-3490.
  • [9] Fortini, A., Merlin, M. & Raminella, G. (2022). A comparative analysis on organic and inorganic core binders for a gravity diecasting Al alloy component. International Journal of Metalcasting. 16(2), 674-688. https://doi.org/10.1007/s40962-021-00628-1.
  • [10] Banganayi, F.C., Nyembwe, D.K. & Polzin, H. (2020). Optimisation of an environmentally friendly foundry inorganic binder core making process for the replacement of an organic binder. MRS Advances. 5(25), 1323-1330. DOI: https://doi.org/10.1557/adv.2020.225.
  • [11] Grabowska, B., Kaczmarska, K., Cukrowicz, S., Mączka, E. & Bobrowski, A. (2020). Polylactide used as filment in 3D printing-part 1: FTIR, DRIFT and TG-DTG studies. Journal of Casting & Materials Engineering. 4(3), 48-52. DOI: https://doi.org/10.7494/jcme.2020.4.3.48.
  • [12] Ullah, S., Flint, J.A. (2014). Electro-textile based wearable patch antenna on biodegradable poly lactic acid (PLA) plastic substrate for 2.45 GHz, ISM band applications. In 2014 International Conference on Emerging Technologies (ICET) (pp.158-163). IEEE. DOI:10.1109/ICET.2014.7021036.
  • [13] Ahmad, M.S., Abdelazeez, M.K. & Zihlif, A.M. (1989). Microwave properties of the talc filled polypropylene. Journal of Materials Science. 24, 1795-1800.
  • [14] Szczepanik, S., & Nikiel, P. (2020). Influence of structural characteristics on the mechanical properties of FDM printed PLA material. Journal of Casting & Materials Engineering, 4(1), 1-8., https://doi.org/10.7494/jcme.2020.4.1.1.
  • [15] Tanveer, M.Q., Mishra, G., Mishra, S. & Sharma, R. (2022). Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review. Materials Today: Proceedings. 62(1), 100-108. https://doi.org/10.1016/j.matpr.2022.02.310.
  • [16] Wang, S., Ma, Y., Deng, Z., Zhang, S., & Cai, J. (2020). Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer testing, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64f88e8f-015c-4891-a615-6b7bd1678042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.