Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Science and engineering intermingle in the area of construction. Engineering works, often of great dimensions and design life cycle of many decades, have to be designed on a scientific basis since the safety of hundreds of users depends on their design. The task of scientific institutions is to define the construction performance within categories that correspond to the contemporary level of knowledge and technology. A construction appraiser who speaks out in a way that ensures unquestionable competence about the performance of elements and buildings (existing and under construction), should be convinced of the scientific basis of his opinions. A comparison of construction sections vs. basic requirements presents an archetype of the science of construction. A matrix of the science of construction reveals its multi-faceted nature; if related to time – the issue of durability has to be considered, and if related to the scale – the complexity. Defining the construction performance in terms of technical features is a constant search for a relationship between the material model and the usability model of a building. The construction industry uses a lot of “rules of thumb”, more than any other sector of technology. In the era of computer-aided design, CAD, and building information modelling (BIM), those rules of thumb remain invaluable verification tools.
Rocznik
Tom
Strony
665--–673
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., fot.
Twórcy
autor
- Building Research Institute (ITB), 1 Filtrowa St., 00-611 Warsaw
autor
- Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
Bibliografia
- [1] L. Czarnecki, “Kształtowanie naukowych podstaw rozwoju budownictwa”, Materiały Budowlane 11, 7–10 (2015), [in Polish].
- [2] L. Czarnecki and J.J. Sokołowska, “Material model and revealing the truth”, Bull. Pol. Ac.: Tech. 63 (1), 7–14 (2015).
- [3] L. Czarnecki, I. Hager, and T. Tracz, “Material problems in civil engineering: Ideas-driving forces-research arena”, Procedia Engineering 108, 3–12 (2015).
- [4] L. Czarnecki and M. Kaproń, “Sustainable construction as a research area”, International Journal of the Society of Materials Engineering for Resources 17, 99–106 (2010).
- [5] “Recommended practice for arrangement of building codes; Report of building committee”, Washington Government Printing Office, 1925, http://hdl.handle.net/2027/uc1.$b78828.
- [6] A. Illomaki, “European horizontal standards for sustainability of building – one system in Europe”, ftp.cen.eu/cen.
- [7] E. Szewczak, “Ryzyko związane z niepewnością wyników badań i oceną zgodności wyrobów budowlanych”, Materiały Budowlane 10, 73–75 (2011), [in Polish].
- [8] E. Szewczak and A. Bondarzewski, “Is the assessment of interlaboratory comparison results for a small number of tests and limited number participants reliable and rational?”, doi:10.1007/s00769‒016‒1195-y, Accreditation and Quality Assurance 21 (2), 91–100 (2016).
- [9] L. Czarnecki, “Wyzwania inżynierii materiałów budowlanych”, Inżynieria i Budownictwo 64 (7), 404–408 (2008), [in Polish].
- [10] CPR No. 305/2011 Annex 1, “Construction Products Regulation”, http://ec.europa.eu/growth/sectors/construction/product-regulation/.
- [11] L. Schueremans and D. Van Gemert, “Effectiveness of hydrophobic treatment as chloride penetration barrier – on the site investigations and service life prediction model”, 5th International Colloquium Materials Science and Restoration “MSR’99”, Technische Akademie Esslingen MSR V, Aedificatio Publishers, 731–740 (1999).
- [12] E. Verstrynge, L. Schueremans, D. Van Gemert, and M. Wevers, “Monitoring and predicting masonry’s creep failure with the acoustic emission technique”, Journal NDT&E International 42, 518–523 (2009).
- [13] L. Czarnecki and W. Trąmpczyński, “Diagnostics and durability estimation of civil structures”, Bull. Pol. Ac.: Tech. 63 (1), 3–5 (2015).
- [14] K. Flaga, “The influence of concrete shrinking on durability of reinforced structural members”, Bull. Pol. Ac.: Tech. 63 (1), 15–22 (2015).
- [15] Z. Owsiak, J. Zapała-Sławeta, and P. Czapik, “Diagnosis of concrete structures distress due to alkali-aggregate reaction”, Bull. Pol. Ac.: Tech. 63 (1), 23–30 (2015).
- [16] Z. Owsiak and P. Czapik, “Interfacial transistion zone of cement paste-reactive aggregate in cement-zeolite mortars”, Bull. Pol. Ac.: Tech. 63 (1), 31–34 (2015).
- [17] Z. Rusin and P. Świercz, “Volumetric strains of cement-based mortars caused by ice formation in terms of frost resistance diagnostics”, Bull. Pol. Ac.: Tech. 63 (1), 35–42 (2015).
- [18] L. Czarnecki and P. Woyciechowski, “Modelling of concrete carbonation; is it a process unlimited in timeand restricted in space?”, Bull. Pol. Ac.: Tech. 63 (1), 43–54 (2015).
- [19] B. Goszczyńska, G. Świt, and W. Trąmpczyński, “Analysis of the microcracking process with the acoustic emission method with respect to the service life of reinforced concrete structures with the example of RC beams”, Bull. Pol. Ac.: Tech. 63 (1), 55–64 (2015).
- [20] M. Rucka and K. Wilde, “Ultrasound monitoring for evaluation of damage in reinforced concrete”, Bull. Pol. Ac.: Tech. 63 (1), 65–76 (2015).
- [21] A. Garbacz, “Application of stress based NDT methods for concrete repair bond quality control”, Bull. Pol. Ac.: Tech. 63 (1), 77–86 (2015).
- [22] J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Pol. Ac.: Tech. 63 (1), 87–96 (2015).
- [23] M. Iwański and A. Chomicz-Kowalska, “Evaluation of the pavement performance”, Bull. Pol. Ac.: Tech. 63 (1), 97–106 (2015).
- [24] J. Kuźniewski, Ł. Skotnicki, and A. Szydło, “Fatigue durability of asphalt-cement mixtures”, Bull. Pol. Ac.: Tech. 63 (1), 107–112 (2015).
- [25] A. Piekarczuk, K. Malowany, P. Więch, M. Kujawińska, and P. Sulik, “Stability and bearing capacity of arch-shaped corrugated shell elements: experimental and numerical study”, Bull. Pol. Ac.: Tech. 63 (1), 113–124 (2015).
- [26] A. Kolbrecki, “Model of fire spread out on outer building surface”, Bull. Pol. Ac.: Tech. 63 (1), 135–144 (2015).
- [27] D. Kowalski, B. Kowalska, and M. Kwietniewski, “Monitoring of water distribution system effectiveness using fractal geometry”, Bull. Pol. Ac.: Tech. 63 (1), 155–161 (2015).
- [28] M.W. Grabski and J.A. Kozubowski, Inżynieria materiałowa. Geneza, istota, perspektywy, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2003, [in Polish].
- [29] L. Czarnecki, M. Kaproń, M. Piasecki, and S. Wall, “Budownictwo zrównoważone budownictwem przyszłości”, Inżynieria i Budownictwo 68 (1), 18–21 (2012), [in Polish].
- [30] W. Radomski, “Nauka w inżynierii lądowej a rola instytutu techniki budowlanej”, in Strategia instytutów badawczych budownictwa, pp. 17–38, ed. L. Czarnecki, Instytut Techniki Budowlanej, 2015, [in Polish].
- [31] H. Heywood, 101 Rules of Thumb for Sustainable Buildings and Cities, RIBA Publishing, 2015.
- [32] R. Smith and R.K. Mobley, Rules of Thumb for Maintenance and Reliability Engineers, Butterworth-Heinemann, 2011.
- [33] E.W. McAllister, Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems, Gulf Professional Publishing, 2015.
- [34] R.A. Rajapakse, Geotechnical Engineering Calculations and Rules of Thumb, Butterworth-Heinemann, 2015.
- [35] R.A. Rajapakse, Pile Design and Construction Rules of Thumb, Butterworth-Heinemann, 2016.
- [36] D. Fisher, Rules of Thumb for Engineers and Scientists, Gulf Publishing Company, 1991.
- [37] N.J. Carinio and H.S. Lew, “The maturity method: From theory to application”, Proceedings of the 2001 Structures Congress & Exposition, ed. P.C. Chang, American Society of Civil Engineers, Washington D.C., 1–19 (2001).
- [38] W. Kurdowski and P. Pichniarczyk, “Problems with the Arrhenius equation in the evaluation of concrete maturity”, Cement Lime Concrete 3, 149–156 (2016), [in Polish and English].
- [39] J. Bobrowicz, “Influence of reduced temperature and admixtures on hydration of cements”, Cement Lime Concrete 3, 177–190 (2016), [in Polish and English].
- [40] A.-A. Flamant, Hydraulique, Librairie Polytechnique C. Béranger, Paris, 1923, [in French].
- [41] S. Arbesman, Overcomplicated: Technology at the Limits of Comprehension, Penguin Random House LLC, 2016.
- [42] R. L’Hermite, De la recherche appliquée à la recherche pure, Centre National de Recherches des Constructions Civiles, Brussels, 1966 [in French].
- [43] J. Hyde, “Getting chartered: the last 5%, being brunel”, www.beingbrunel.com/getting-chartered-the-last-5.
- [44] E. Verstrynge, L. Schueremans, and D. Van Gemert, “Creep and failure prediction of Diestian ferruginous sandstone: modelling and repair options”, Construction and Building Materials 29, doi: 10.1016:j.conbuildmat.2011.10.042, 149–157 (2012).
- [45] E. Verstrynge, L. Schueremans, and D. Van Gemert, “Long-term behaviour of monumental masonry constructions: assessment methodology and case studies”, Bausubstanz, Zeitschrift für nachhaltiges Bauen, Bauwerkserhaltung und Denkmalpflege 2, 48–53 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64f74ff3-d4b3-4997-acd0-dcc39c7ed872