PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Proximate analysis of lignocellulosic biomass and its utilization for production, purification and characterization of ligninolytic enzymes by Aspergillus flavus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ligninolytic enzymes are employed for the production of second-generation biofuel to minimize fuel crisis. Additionally, they play a crucial role in global carbon cycle and a variety of applications in food, agriculture, paper and textile industries. On a large scale production of ligninolytic enzymes, microorganisms can be cultured on lignocellulosic wastes. In the present study, proximate analysis including acid detergent lignin (ADL), acid detergent cellulose (ADC), acid detergent fiber (ADF) and acid insoluble ash (AIA) were performed for Platanus orientalis (chinar), Bauhinia variegata (orchid tree), Pinus roxburghii (chirpine), wheat straw and wheat husk. Platanus orientalis was selected as substrate because of higher lignin contents for the production of ligninolytic enzymes by Aspergillus flavus. Solid State Fermentation was used and Response Surface Methodology was employed for optimizing various parameters and enzymes production. Maximum production was achieved at temperature 32°C, fermentation period 120 hours, pH 4.5, inoculums size 3.5 mL, substrate mesh size 80 mm, substrate size 7 g. Maximum purification of laccase, manganese peroxidase (MnP) and lignin peroxidase (LiP) was achieved with 50%, 60% and 40% ammonium sulfate respectively and it was enhanced by gel filtration chromatography. Characterization of enzymes shows that Laccase has 35°C optimum temperature, 4.5 pH, 0.289 mM Km and 227.27 μM/ml Vmax. Manganese peroxidase has 30°C optimum temperature, 5.5 pH, 0.538 mM Km and 203.08 μM/ml Vmax. Lignin peroxidase has 30°C optimum temperature, 3 pH, 2 mM Km and 2000 uM/ml Vmax. Protein concentrations found in crude extracts and partially purified enzymes are respectively: laccase 1.78 and 0.71 mg/ml, MnP 1.59 and 0.68 mg/ml. LiP, 1.70 and 0.69 mg/ml.
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 52 poz., tab., wykr.
Twórcy
  • University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • Department of Biosciences, University of WAH, WAH Pakistan
  • University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
  • University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
autor
  • University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  • Department of Plant Breeding & Genetics, Balochistan Agriculture College Quetta, Pakistan
autor
  • Department of Medical Laboratory Technology, Haripur University, Haripur, KPK, Pakistan
Bibliografia
  • 1. A.O.A.C. (1990). Official Method of Analysis 15th Ed. Association of Official Analytical Chemists, Washington, D.C.: U.S.A.
  • 2. A.O.A.C. (1995). Official Methods of Analysis. 13th Ed. Association of Official Analytical Chemist, Washington, D.C., USA.
  • 3. Asgher, M., Irshad, M. & Iqbal, H.M.N. (2013). Purification and characterization of novel manganese peroxidase from Schizophyllum commune IBL-06. International Journal of Agriculture & Biology, 15, 4, pp. 749-754. Retrieved from http://www.fspublishers.org/published_papers/75952_pdf.
  • 4. Asgher, M., Kausar, S., Bhatti, H.N., Shah, S.A.H. & Ali, M. (2008). Optimization of medium for decolourization of solar golden yellow R direct textile dye by Schizophyllum commune IBL 06. International Biodeterioration & Biodegradation, 61, 2, pp.189-93, DOI: org/10.1016/j.ibiod.2007.07.009.
  • 5. Aslam, S. & Asgher M. (2011). Partial purification and characterization of ligninolytic enzymes produced by Pleurotus ostreatus during solid state fermentation. African Journal of Biotechnology, 10, 77, pp. 17875-17883, DOI: 10.5897/AJB11.2233.
  • 6. Baborova, P., Moder, M., Baldrian, P., Cajthamlova K. & Cajthaml, T. (2006). Purification of a new manganese peroxidase of the whiterot fungus Irpex lacteus and degradation of polycyclic aromatic hydrocarbons by the enzyme, Research in Microbiology, 157, 3, pp. 248-253, DOI: org/10.1016/j.resmic.2005.09.001.
  • 7. Beeraka, N., Katikala, P.K., Bobbarala, V. & Tadimalla, R. (2008). Optimization of xylanase production under solid state fermentation by isolated Aspergillus fumigatus (MTCC 9372). Indian Journal Multidisciplinary Research, 4, 4, pp. 507-516. Retrieved from https://www.scribd.com/document/17438144/Optimization-of-Xylanase-Production-Under-Solid-State.
  • 8. Bermek, H., Yazici, H., Ozturk, H., Tamerler, C., Jung H., Li, K., Brown. K.M., Ding, H.& Xu, F. (2004). Purification and Characterization of Manganese Peroxodase from Wood Degrading Fungus Trichophyton rubrum LSK-27, Enzyme and Microbial Technology, 35, 1, pp. 87-92, DOI: 10.1016/j.enzmictec.2004.04.004.
  • 9. Bibi, I. & Bhatti, H.N. (2012). Kinetic and Thermodynamic Characterization of Lignin Peroxidase Isolated from Agaricus bitorqus A66, International Journal of Chemical Reactor Engineering, 10, 1, A14, DOI: org/10.1515/1542-6580.2837.
  • 10. Boudet, A.M. (2000). Lignins and lignification: selected issues. Plant Physiology and Biochemistry, 38, 1-2, pp. 81-96, DOI: org/10.1016/S0981-9428(00)00166-2.
  • 11. Bumpus, J.A. & Aust, S.D. (1987). Biodegradation of environmental pollutants by Phanerochaete chrysosporium, involvement of the lignin degrading system. Bio Essays, 6, 4, pp. 166-170, DOI: org/10.1002/bies.950060405.
  • 12. Bumpus, J.A., Tien, M., Wright D.S. & Aust S.D. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228, 4706, pp. 1434-1436, DOI:10.1126/science.3925550.
  • 13. De Oliveira, P.L., Duarte, M.C.T., Ponez, A.N. & Durrant, L.R. (2009). Purification and Partial Characterization of Manganese Peroxidase from Bacillus pumilus and Paenibacillus sp., Brazilian Journal of Microbiology, 40, 4, pp. 818-826, DOI: org/10.1590/S1517-83822009000400012.
  • 14. Dhong, J.L. & Zhang, Y.Z. (2004). Purification and characterization of two laccase isoenzymes from a ligninolytic fungus trametes gallica, Prepative Biochemistry and Biotechnology, 34, 2, pp. 179-194, DOI: 10.1081/pb-120030876.
  • 15. Dias, A.A., Sampaio A. & Bezerra R.M.F., (2007). Environmental applications of fungal and plant systems: decolorization of textile waste water and related dyestuff s. In: Singh, S. & Tripathi, R. (Eds.), Environmental Bioremediation Technology, (pp. 445-463). Springer Berlin Heidelberg, DOI: 10.1007/978-3-540-34793-4_19.
  • 16. Domenguez, A., Gomez, J., Lorenzo, M. & Sangroman, A., (2007). Enhanced production of laccase by trametes visicolor immobilized in to alginate beads by the addition of different inducers. World Journal of Microbiology and Biotechology, 23, 3, pp. 367-373, DOI 10.1007/s11274-006-9233-2.
  • 17. Egwim, E., Kabiru, A. & Tola, A.J. (2015). Partial characterization of lignin peroxidase expressed by bacterial and fungal isolates from termite gut. Biokemistri, 27, 1, pp. 33-38. Retrieved from https://www.ajol.info/index.php/biokem/article/view/133031.
  • 18. Feldman, D. (2002). Lignin and its polyblends. In: Hu, T. Q. (Ed.) Chemical modification, properties, and usage of lignin (pp. 81-100). New York, Kluwer Academic/Plenum Publishers.
  • 19. Fujian, X., Chen, H. & Zuohu L. (2001). Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresource Technology, 80, 2, pp. 149-151, DOI: 10.1016/s0960-8524(01)00082-7.
  • 20. Galhaup, C., Goller, S., Peterbauer, C.K., Strauss, J. & Haltrich, D. (2002). Characterization of the major laccase isoenzyme from trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148, pp. 2159-2169. DOI: 10.1099/00221287-148-7-2159.
  • 21. Garavaglia, S., Teresa, C., Miglio, M., Ragusa, S., Iacobazzi, V., Palmieri, F., Ambrosio, C., Scaloni, A. & Rizzi, M. (2004). The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Journal of Molecular Biology, 342, 5, pp. 1519-1531, DOI:10.1016/j.jmb.2004.07.100.
  • 22. Goering, H.K. & Van Soest, P.J. (1970). Forage fiber analyses (Apparatus, Reagents, Procedures, and Some Applications). Agriculture Handbook No. 379, Agricultural Research Service, USDA, pp. 8-9.
  • 23. Harazono, K., Kondo, R. & Sakai, K. (1996). Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO4. Applied and Environmental Microbiology, 62, 3, pp. 913-917. Retrieved from https://www.researchgate.net/publication/7243872.
  • 24. Hofrichter, M. (2002), Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30, 4, pp. 454-466, DOI: 10.1016/s0141-0229(01)00528-2.
  • 25. Irshad, M. & Asgher, M. (2011). Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African Journal of biotechnology, 10, 79, pp. 18234-18242, DOI: 10.5897/ajb11.2242.
  • 26. Kammoun, M.M., Mechichi, H.Z. Lassaad, B., Woodward, S. & Mechichi, T. (2009). Malachite green decolourization and detoxification by laccase from a newly isolated strain of Trametes sp. International Biodeterioration & Biodegradation, 63, 5, pp. 600-606, DOI.org/10.1016/j.ibiod.2009.04.003.
  • 27. Kapdan, I., Kargi, F., McMullan, G. & Marchant, R. (2000). Comparison of white rot fungi cultures for decolorization of textile dye stuff s, Bioprocess Engineering 22, 4, pp. 347-351, DOI: 10.1007/s004490050742.
  • 28. Krishna, C. (1999). Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Technology, 69, 3, pp. 231-239. DOI: org/10.1016/S0960-8524(98)00193-X.
  • 29. Latifian, M., Hamidi, E.Z. & Barzegar, M. (2007). Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology, 98, 18, pp. 3634-3637, DOI.org/10.1016/j.biortech.2006.11.019.
  • 30. Lowry, O.H., Rosebrough, N. J., Farr A.L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, pp. 265-275. Retrieved from http://www.jbc.org/content/193/1/265.long.
  • 31. Mahmood, R.T., Asad M.J., Mehboob, N., Mushtaq, M., Gulfraz, M., Hadri S.H., Asgher, M. & Minhas, N.M. (2013). Production, Purification and Characterization of Exoglucanase by Aspergillus fumigatus. Applied Biochemistry and Biotechnology 170, 4, pp. 895-908, DOI: 10.1007/s12010-013-0227-x.
  • 32. Martinez A.T. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microbial Technology, 30, 4, pp. 425-444, DOI: org/10.1016/S0141-0229(01)00521-X.
  • 33. Orth, A.B. & Tien, M. (1995). Biotechnology of lignin degradation, In: Kück, U., (Ed.). The Mycota, 2, (pp. 287-302). Germany, Springer-Verlag.
  • 34. Parish, J. (2007). Effective fiber in beef cattle diet. Cattle business mississipii. (https://extension.msstate.edu/sites/default/files/topicfiles/cattle-business mississippi-articles/cattle-business-mississippiarticles-landing page/mca_mar2007).
  • 35. Rai, N., Yadav, M. & Yadav, H.S. (2016). Enzymatic characterization of lignin peroxidase from luff a aegyptiaca fruit juice. American Journal of Plant Sciences 7, 3, pp. 649-656, DOI: org/10.4236/ajps.2016.73057.
  • 36. Rajan, A., Kurup, J.G. & Abraham, T.E. (2010). Solid state production of manganese peroxidase using arecanut husk as substrate. Brazilian Archives of Biology and Technology, 53, 3, pp. 555-562, DOI: org/10.1590/S1516-89132010000300008 .
  • 37. Rogalski, J. & Janusz, G. (2010). Purification of extracellular laccase from Cerrena unicolor. Preparative Biochemistry & Biotechnology, 40, pp. 242-255, DOI: org/10.1080/10826068.2010.488967.
  • 38. Rotkova, J., Sulakova, R., Korecka, L., Zdrazilova, P., Jandova, M., Lenfled, J., Horak, D. & Bilkova, Z. (2009). Laccase immobilized on magnetic carriers for biotechnology applications. Journal of Magnetism and Magnetic Materials, 321, 10, pp. 1335-1340, DOI: org/10.1016/j.jmmm.2009.02.034.
  • 39. Sahay, R., Yadav, R.S.S. & Yadav, K.D.S. (2008). Purification and characterization of extracellular laccase secreted by pleurotus sajor-caju MTCC 141. Chinese Journal of Biotechnology, 24, 12, pp. 2068-2073, DOI: org/10.1016/S1872-2075(09)60013-3.
  • 40. Sahay, R., Yadav, R.S.S. & Yadav, K.D.S. (2009). Purification and characterization of laccase secreted by L. lividus. Applied Biochemistry and Biotechnology, 157, 2, pp. 311-320. DOI: 10.1007/s12010-008-8265-5.
  • 41. Shafique, S., Asgher, M., Sheikh, M.A. & Asad, M.J. (2004). Solid state fermentation of banana stalk for exoglucanase production. International Journal of Agriculture and Biology, 6, 3, pp. 488-491, DOI: 1560-8530/2004/06-3-488-491.
  • 42. Shin, K.S. & Lee, Y.J. (2000). Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Archives of Biochemistry and Biophysics, 384, 1, pp. 109-115, DOI: org/10.1006/abbi.2000.2083.
  • 43. Sindhu, R., Suprabha, G.N. & Shashidhar, S. (2009). Optimization of process parameters for the of α-amylase from Penicillium janthinellum (NCIM 4960) under solid state fermentation. African Journal of Microbiology Research, 3, 9, pp. 498-503 Retrieved from academicjournals.org/app/webroot/article/article1380281962_Sindhu%20et%20al.pdf.
  • 44. Singh, H., Sapra, P.K. & Sidhu, B.S. (2013). Evaluation and Characterization of Different Biomass Residues through Proximate & Ultimate Analysis and Heating Value. Asian Journal of Engineering and Applied Technology, 2, 2, pp. 6-10.
  • 45. Sylvia, D.J., Lakshmi, J. & Devi, R. (2015). Purification and Characterization of Manganese Peroxidase from Musa Acuminata Stem and Its Effect on Degradation of Dye Effluent. International Journal of Innovative Research in Science, Engineering and Technology, 4, 5, pp. 2981-1987, DOI: 10.15680/IJIRSET.2015.0405066.
  • 46. Tien, M. & Kirk, T.K. (1988). Lignin Peroxidase of Phanerochaete chrysosporium In: Wood, W.A. & Kellogg, S.T. (Eds.), Methods in enzymology-Biomass, part b, lignin, pectin, and chitin. San Diego, CA (pp. 238-249). Academic Press, Inc 161,
  • 47. Van Soest, P.J. (1963b). Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. Journal--Association of Official Analytical Chemists, 46, pp. 829-835. Retrieved from https://catalogo.latu.org.uy/opac_css/doc_num.php?explnum_id=1479.
  • 48. Venkatadri, R. & Irvine, R.L. (1993). Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor system: hollow fibre reactor and silicone membrane reactor, Water Research, 27, 4, pp. 591-596, DOI: org/10.1016/0043-1354(93)90168-H.
  • 49. Wariishi, H., Valli, K. & Gold, M.H. (1992). Manganese (II) oxidation by manganese peroxidase from the Basidiomycete Phanerochaete chyrsosporium. The journal of Biological chemistry, 267, 25, pp. 236888-23695. Retrieved from http://www.wcbbf.org/pdf/baisdiomycete/6.pdf.
  • 50. Wesenberg, D., Kyriakides, I. & Agathos, W. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, pp. 161-187, DOI: org/10.1016/j.biotechadv.2003.08.011.
  • 51. Yadav, M., Yadav, P. & Singh, K.D.S. (2009). Purification and characterization of lignin peroxidase from Loweporus lividus MTCC-1178. Engineering in Life Sciences, 9, 2, pp.124-129, DOI: org/10.1002/elsc.200800084.
  • 52. Yasmeen, Q., Asgher, M., Sheikh, M.A. & Nawaz, H. (2013). Optimization of ligniniolytic enzymes through response surface methodology. Bioresources, 8, 1, pp. 944-968, DOI: 10.15376/biores.8.1.944-968.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64f5fc86-a162-48ab-8455-a17d35775208
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.