PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal and acoustic behavior of energy saving wall panel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research and development of energy-efficient materials have been essential for sustainable infrastructure growth. A considerable amount of money is being spent on various energy stabilization techniques worldwide to attain thermal comfort in buildings. Thus, lowering the energy demand through green materials is vital to save energy and the environment. In this paper, a new form of Structural Insulated Panel (SIP) has been developed and referred to as Ferro Cellular Lightweight Concrete Insulated Panel (FCIP). Comparative thermal efficiency and acoustic performance of FCIP and brick masonry walls have been tested experimentally. The thermal results show that FCIP allows just 2ºC rise in the internal temperature of the room chamber in two hours, whereas the brick masonry allows 9.5ºC rise in the internal temperature of the room chamber for the same period. Similarly, the acoustic results show that FCIP has 0.85 sound absorption coefficient compared to 0.2 for brick masonry wall. Further, the cost-benefit analysis was conducted based on the electricity consumption results of a building produced by the eQuest energy simulation program. The outcome shows that the building’s lifetime running cost gets reduced to 50% when FCIP replaces the concrete/brick masonry envelope.
Rocznik
Strony
303--316
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
  • Dept. of Civil Engineering, Aligarh Muslim University, Aligarh, India
autor
  • Dept. of Civil Engineering, Aligarh Muslim University, Aligarh, India
  • Dept. of Civil Engineering, Aligarh Muslim University, Aligarh, India
Bibliografia
  • [1] N.A. Kurekci, “Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers”, Energy and Buildings, pp. 197-213, 2016, DOI: 10.1016/j.enbuild.2016.03.004.
  • [2] “Green building”, www.usgbc.org/articles/green-building-101-why-energy-efficiency-important (accessed 12 Jan 2021).
  • [3] M. Mohamed et al., “Manufacturing and evaluation of polyurethane composite structural insulated panels”, Journal of Sandwich Structures and Materials, pp. 769-789, 2016, DOI: 10.1177/1099636215626597.
  • [4] S. Chaiyapinunt and N. Khamporn, “Selecting glass window with film for buildings in a hot climate”, Engineering Joutnal, pp. 29-42, 2009, DOI: 10.4186/ej.2009.13.1.29.
  • [5] M.S. Sodha, J. Kaur, and R.L. Sawhney, “Effect of orientation on thermal performance of the building”, pp. 709-715, 1992, DOI: 10.1002/er.4440160806.
  • [6] T. Pekdogan and T. Basaran, “Thermal performance of different exterior wall structures based on wall orientation”, Applied Thermal Engineering, pp. 15-24, 2017, DOI: 10.1016/j.applthermaleng.2016.10.068.
  • [7] G. Kirankumar, S. Saboor, and T.P. Ashok Babu, “Thermal analysis of wall and window glass materials for cooling load reduction in green energy building design”, Matererials Today: Proceedings, pp. 9514-9518, 2017, DOI: 10.1016/j.matpr.2017.06.215.
  • [8] H.T. Rakotondramiarana, T.F. Ranaivoarisoa, and D. Morau, “Dynamic simulation of the green roofs impact on building energy performance”, Case Study of Antananarivo, Madagascar, pp. 497-520, 2015, DOI: 10.3390/buildings5020497.
  • [9] Q.T. Review, “Quadrennial Technology Review”, An assessment of energy technologies and research. Chapter 5: Increasing Efficiency of Building, 2015.
  • [10] H.U. Rehman, “Steady state experimental analysis of various solar insulation materials and techniques for buildings in climatic condition of ras al khaimah”, ARE, Energy Procedia, pp. 1419-1424, 2015, DOI: 10.1016/j.egypro.2015.07.241.
  • [11] N.C. Balaji, “Thermal performance of the building walls”, Building Simulation Applications (BSA 2013), 1st . IBPSA Italy conference Bozen - Bolzano, pp. 151-160, 1998.
  • [12] M.A. Mousa and N. Uddin, “Global buckling of composite structural insulated wall panels”, Mater. Des., pp. 766-772, 2011, DOI: 10.1016/j.matdes.2010.07.026.
  • [13] M.A Medina., J.B. King, M. Zhang, “On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)”, Energy, pp. 667-678, 2008, DOI: 10.1016/j.energy.2007.11.003.
  • [14] B Yeh., T. Williamson, and E Keith., “Development of structural insulated panel standards”, vol. 314, 2008, DOI: 10.1061/41016(314)232.
  • [15] M. Panjehpour, A.A.A. Ali, and Y.L. Voo, “Structural Insulated Panels: Past, Present, and Future”, Journal of Enineering, Project and Production Management, pp. 2-8, 2013, DOI: 10.32738/JEPPM.201301.0002.
  • [16] SIPs and CSIPs, www.generalpanel.com/downloads/whataresips.pdf (accessed 8 Nov 2020).
  • [17] “Precast febrication, www.financialexpress.com/opinion/precast-prefabrication-can-help-construct-houses-inlesser-time-and-at-lower-cost/1242735/ (accessed 10 Dec 2020).
  • [18] T. Sharaf, W. Shawkat, A. Fam, “Structural performance of sandwichwall panels with different foam core densities in one-way bending”, Journal of Composite Materials, pp. 2249-2263, 2010, DOI: 10.1177/0021998310369577.
  • [19] M.A. Mousa and N. Uddin, “Structural behavior and modeling of full-scale composite structural insulated wall panels”, Engineering Structures, pp. 320-334, 2012, DOI: 10.1016/j.engstruct.2012.03.028.
  • [20] A. Vaidya, N. Uddin, and U. Vaidya, “Structural characterization of composite structural insulated panels for exterior wall applications”, Journal of Composites and Construction, pp. 464-469, 2010, DOI: 10.1061/(ASCE)CC.1943-5614.0000037.
  • [21] T. Smakosz and J. Tejchman, “Evaluation of strength, deformability and failure mode of composite structural insulated panels”, Materials and Design, pp. 1068-1082, 2014, DOI: 10.1016/j.matdes.2013.09.032.
  • [22] M.Y. Khan, A. Baqi, and A. Talib, “Energy efficiency analysis of a building envelope”, Springer Proceedings in Energy, pp. 1691-1702, 2021, DOI: 10.1007/978-981-15-5955-6_160.
  • [23] G.C. Saha, A.L. Kalamkarov, and A.V. Georgiades, “Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials”, Composites: Part A Applied Science and Manufacturing, pp. 1533-1546, 2007, DOI: 10.1016/j.compositesa.2007.01.002.
  • [24] M.Y. Khan, A. Baqi, and R.A. Khan, “Development of an improved quality cellular lightweight foamed concrete with low cement content”, Journal of Engineering Research (under communication).
  • [25] “Structural Insulated Panels, www.wbdg.org/resources/structural-insulated-panels-sips (accessed 15 Nov 2020).
  • [26] L.F Cabeza et al., “Experimental study of using PCM in brick constructive solutions for passive cooling”, Energy Build., pp. 534-540, 2010, DOI: 10.1016/j.enbuild.2009.10.022.
  • [27] B. Birdsall et al., “Overview of the DOE-2 building energy analysis program”, version 2.1 D, 1990.
  • [28] “Thermal conductivity”, www.fao.org/3/y5013e/y5013e08.htm (accessed 15 Nov 2020).
  • [29] Heavy Duty Fibre Cement Board - Technical Data Sheet, www.everestind.com/boards-panels/fibre-cementboards (accessed 19 Jan 2020).
  • [30] “Electricity rate”, www.economictimes.indiatimes.com/industry/energy/power/budget-emphasises-on-renewables-evs-for-indias-energy-security/articleshow/67797090.cms (accessed 5 Jan 2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64f17d45-0b8a-4fd6-bbff-867c9315523e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.