PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geomechanical assessments of longwall working stability – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stability of longwall mining is one of the most important and the most difficult aspects of underground coal mining. The loss of longwall stability can threaten lives, disrupt the continuity of the mining operations, and it requires significant materials and labour costs associated with replacing the damages. In fact, longwall mining stability is affected by many factors combined. Each case of longwall mining has its own unique and complex geological and mining conditions. Therefore, any case study of longwall stability requires an individual analysis. In Poland, longwall mining has been applied in underground coal mining for years. The stability of the longwall working is often examined using an empirical method. A regular longwall mining panel (F3) operation was designed and conducted at the Borynia-Zofiówka-Jastrzębie (BZJ) coal mine. During its advancement, roof failures were observed, causing a stoppage. This paper aims to identify and determine the mechanisms of these failures that occurred in the F3 longwall. A numerical model was performed using the finite difference method - code FLAC2D, representing the exact geological and mining conditions of the F3 longwall working. Major factors that influenced the stability of the F3 longwall were taken into account. Based on the obtained results from numerical analysis and the in-situ observations, the stability of the F3 longwall was discussed and evaluated. Consequently, recommended practical actions regarding roof control were put forward for continued operation in the F3 longwall panel.
Rocznik
Strony
333--354
Opis fizyczny
Bibliogr. 51 poz., fot., rys., tab., wykr.
Bibliografia
  • [1] S. Prusek, S. Rajwa, A. Wrana, A. Krzemień, Assessment of roof fall risk in longwall coal mines. International Journal of Mining, Reclamation and Environment 31 (8), 558-574 (2017). DOI: https://doi.org/10.1080/17480930.2016.1200897.
  • [2] T.P. Medhurst, Practical considerations in longwall support behaviour and ground response. Proceedings of the 5th Coal Operators’ Conference, Wollongong, New South Wales, pp. 49-58 (2005).
  • [3] T.M. Barczak, Examination of design and operation practices for longwall shields. Bureau of Mines Information Circular, USA.IC.9320 (United State Department of the Interior) (1992).
  • [4] R. Frith, A holistic examination of the load rating design of longwall shields after more than half a century of mechanized longwall mining. Int. J. Min. Sci. Technol. 25 (5), 687-706 (2015). DOI: https://doi.org/10.1016/j.ijmst.2015.07.001.
  • [5] Y.M. Jiang, B. Wells, Analysis of geologic and geotechnical conditions and their effects on longwall mining to optimize mine planning at Shoal Creek mine. Proceedings of the 17th International Conference on Ground Control in Mining, Wollongong, New South Wales, pp. 54-62 (1998).
  • [6] J. Wang, Z. Wang, Systematic principles of surrounding rock control in longwall mining within thick coal seams. International Journal of Mining Science and Technology 29 (1), 65-71 (2019). DOI: https://doi.org/10.1016/j.ijmst.2018.11.014.
  • [7] R. Trueman, G. Lyman, A. Cocker, Longwall roof control through a fundamental understanding of shield-strata interaction. International Journal of Rock Mechanics and Mining Sciences 46 (2), 371-380 (2009). DOI: https://doi.org/10.1016/j.ijrmms.2008.07.003.
  • [8] T. Cichy, S. Prusek, J. Świątek, D. Apel, Y. Pu, Use of Neural Networks to Forecast Seismic Hazard Expressed by Number of Tremors Per Unit of Surface. Pure Appl. Geophys. 177, 5713-5722 (2020). DOI: https://doi.org/10.1007/s00024-020-02602-0.
  • [9] S.X. Hu, L.Q. Ma, J.S. Guo, P.J. Yang, Support-surrounding rock relationship and top-coal movement laws in large dip angle fully-mechanized caving face. Int. J. Min. Sci. Technol. 28 (3), 533-539 (2018). DOI: https://doi. org/10.1016/j.ijmst.2017.10.001.
  • [10] S. Prusek, W. Masny, Analysis of damage to underground workings and their support caused by dynamic phenomena. J. Min. Sci. 51 (1), 63-72 (2015). DOI: https://doi.org/10.1134/S1062739115010093.
  • [11] S. Rajwa, T. Janoszek, S. Prusek, Influence of canopy ratio of powered roof support on longwall working stability – A case study. Int. J. of Min. Sci. and Technol. 29 (4) (2019). DOI: https://doi.org/10.1016/j.ijmst.2019.06.002.
  • [12] S. Rajwa, T. Janoszek, S. Prusek, Model tests of the effect of active roof support on the working stability of a longwall. Computers and Geotechnics 118 (5), 103302 (2020). DOI: https://doi.org/10.1016/j.compgeo.2019.103302.
  • [13] C. Liu, H.M. Li, D.J. Jiang, Numerical simulation study on the relationship between mining heights and shield resistance in longwall panel. Int. J. Min. Sci. Technol. 27 (2), 293-297 (2017). DOI: https://doi.org/10.1016/j.ijmst.2017.01.017.
  • [14] A. Biliński, Manifestations of rock mass pressure in longwall mining panel in coal seams (in Polish). Politechnika Śląska, Zeszyt Naukowy nr 221, Górnictwo z. 31, Gliwice (1968).
  • [15] S. Prusek, S. Rajwa, W. Kasperkiewicz, T. Budniok, Assessment of performance of powered shield support used on weak floor, World Mining Congress, Montréal (2013).
  • [16] S. Rajwa, M. Płonka, Z. Lubosik, A. Walentek, W.Masny, Principles of safe use of powered supports, Proceedings of the School of Underground Mining, Ukraina (2008).
  • [17] M. Płonka, S. Prusek, K. Rułka, 3D strata model application for the selection method of the support for longwall excavation, III International Conference Mining Techniques, Kraków – Krynica, 233-245 (2003).
  • [18] S.R. Islavath, D. Deb, H. Kumar, Life cycle analysis and damage prediction of a longwall powered support using 3D numerical modelling techniques. Arabian Journal of Geosciences 12 (14), (2019). DOI: https://doi.org/10.1007/s12517-019-4574-y.
  • [19] S. Prusek, M. Płonka, A. Walentek, Applying the ground reaction curve concept to the assessment of shield support performance in longwall faces. Arab. J. Geosci. 9 (3), (2016). DOI: https://doi.org/10.1007/s12517-015-2171-2.
  • [20] M. Witek, S. Prusek, Numerical calculations of shield support stress based on laboratory test results. Computers and Geotechnics 72, 74-88 (2016). DOI: https://doi.org/10.1016/j.compgeo.2015.11.007.
  • [21] Q.S. Bai, S.H. Tu, X.G. Zhang, Numerical modelling on brittle failure of coal wall in longwall face – a case study. Arab. J. Geosci. 7 (12), 5067-5080 (2014). DOI: https://doi.org/10.1007/s12517-013-1181-1.
  • [22] A.K. Verma, D. Deb, Numerical Analysis of an Interaction between Hydraulic-Powered Support and Surrounding Rock Strata. International Journal of Geomechanics 13 (2), (2013). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000190.
  • [23] G.S.P. Singh, U.K. Singh, Influence of strata characteristics on face support requirement for roof control in longwall workings – a case study, Mining Technology, Transactions of the Institutions of Mining and Metallurgy: Section A. 121 (1) (2012). DOI: https://doi.org/10.1179/174328611X13061613463896.
  • [24] G.S.P. Singh, U.K. Singh, Prediction of caving behaviour of strata and optimum rating of hydraulic powered support for longwall workings. International Journal of Rock Mechanics and Mining Sciences 47 (1), 1-16 (2010). DOI: https://doi.org/10.1016/j.ijrmms.2009.09.001.
  • [25] T.G. Sitharam, V.B. Maji, A.K. Verma, Equivalent continuum analyses of jointed rockmass, 40th US Symposium on Rock Mechanics (USRMS): Rock mechanics for energy, mineral and infrastructure development in the Northern Regions, Alaska, pages 25-29 (2005).
  • [26] P. Sharma, A.K. Verma, P. Gautam, Stability analysis of underground pillar in the presence of overlying dump: a case study. Arabian Journal of Geosciences 13 (5), 1-13 (2020). DOI: https://doi.org/10.1007/s12517-020-5133-2.
  • [27] FLAC2D, Version 6.0, Itasca Consulting Group Inc., Minneapolis; software available at www.itascacg.com (2008).
  • [28] Central Mining Institute (GIG), Research and development documentation (in Polish), Katowice (2017) (unpublished).
  • [29] A. Biliński, Method of selection of longwall face and roadway supports for the panelling conditions (in Polish). Prace naukowe – Monografie CMG KOMAG. Gliwice (2005).
  • [30] PROSAFECOAL, Increased productivity and safety of European coalmines by advanced techniques, knowledge and planning tools enabling strata control of the face-roadway junction. Projektu PROSAFECOAL realizowany w ramach Funduszu Badawczego dla Węgla i Stali (Research Fund for Coal and Steel) nr kontraktu RFCRCT-2007-00001 (2007-2010).
  • [31] S.S. Peng, H.S. Chaing, Longwall Mining, John Wiley and Sons, Inc., New York (1984).
  • [32] M. Bai, F. Kendorski, D. Van Roosendaal, Chinese and North American high-extraction underground coal mining strata behavior and water protection experience and guidelines. The 14th International Conference on Ground Control in Mining, Morgantown (1995).
  • [33] M. Mazurkiewicz, Z. Piotrowski, A. Tajduś, Lokowanie odpadów w kopalniach podziemnych. cz. II Geoinżynieria. Biblioteka Szkoły Eksploatacji Podziemnej, s. 129 (1997).
  • [34] K. Heasley, A review of Subsidence and Fire Potential at the Major Battery Site, Report no. 2004-P-0017 (2004).
  • [35] H. Wang, D. Zhang, X. Wang, W. Zhang, Visual exploration of the spatiotemporal evolution law of overburden failure and mining-induced fractures: A case study of the Wangjialing coal mine in China. Minerals 7, 35 (2017). DOI: https://doi.org/10.3390/min7030035.
  • [36] H. Yavuz, An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines. Journal of Rock Mechanics and Mining Sciences and Geomechanics 41 (2), 193-205 (2004). DOI: https://doi.org/10.1016/S1365-1609(03)00082-0.
  • [37] K. Tajduś, New method for determining the elastic parameters of rock mass layers in the region of underground mining influence. Int. J. Rock Mech. Mining Sci. 46 (8), 1296-1305 (2009). DOI: https://doi.org/10.1016/j.ijrmms.2009.04.006.
  • [38] Y.M. Cheng, J.A. Wang, G.X. Xie, W.B. Wei, Three-dimensional analysis of coal barrier pillars in tailgate area adjacent to the fully mechanized top caving mining face. Int. J. Rock Mech. Mining Sci. 47 (8), 1372-1383 (2010). DOI: https://doi.org/10.1016/j.ijrmms.2010.08.008.
  • [39] Y. Jiang, H. Wang, S. Xue, Y. Zhao, J. Zhu, X. Pang, Assessment of mitigation of coal bump risk during extraction of an island longwall panel. Int. J. Coal Geol. 95, 20-33 (2012). DOI: https://doi.org/10.1016/j.coal.2012.02.003.
  • [40] S.S. Ahmed, A. Marwan, Y. Gunzburger, V. Renaud, 3D numerical simulation of the goaf due to large-scale longwall mining. International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology” GeoMEast 2017: Numerical Analysis of Nonlinear Coupled Problems pp. 121-131 (2017).
  • [41] M. Płonka, S. Rajwa, Difficulties observed in operating powered roof support during work in lower range of its working height, Mining – Informatics, Automation and Electrical Engineering. 4 (536), 45-64 (2018). DOI: https://doi.org/10.7494/miag.2018.4.536.45.
  • [42] P. Mao, H. Hashikawa, T. Sasaoka, H. Shimada, Z. Wan, A. Hamanaka, J. Oya, Numerical Investigation of Roof Stability in Longwall Face Developed in Shallow Depth under Weak Geological Conditions. Sustainability 14, 10-36 (2022). DOI: https://doi.org/10.3390/su14031036.
  • [43] P.M.V. Nguyen, T. Olczak, S. Rajwa, An investigation of longwall failure using 3D numerical modelling – A case study at a copper mine. Studia Geotechnica et Mechanica 43 (4), 389-410 (2021). DOI: https://doi.org/10.2478/sgem-2021-0019.
  • [44] G. Song, Y.P. Chugh, J. Wang, A numerical modelling study of longwall face stability in mining thick coal seams in China. Int. J. Mining and Mineral Engineering 8 (1), 35-55 (2017). DOI: https://doi.org/10.1504/IJMME.2017.082682.
  • [45] S. Rajwa, The Influence of the Geometrical Construction of the Powered Roof Support on the Loss of a Longwall Working Stability Based on the Practical Experience. Archives of Mining Sciences 65 (3), 511-529 (2020). DOI: https://doi.org/10.24425/ams.2020.134132.
  • [46] T. Janoszek, The assessment of longwall working stability based on the Mohr-Coulomb stress criterion – numerical analysis. Archives of Mining Sciences 65 (3), 493-509 (2020). DOI: https://doi.org/10.24425/ams.2020.134131.
  • [47] A.H. Wilson, The stability of underground workings in the soft rocks of the coal measures. Int. J. Min. Eng. 1, 91-187 (1982). DOI: https://doi.org/10.1007/BF00880785.
  • [48] A.A. Campoli, T.M. Barton, F. Dyke, M. Gauna, Gob and gate road reaction to longwall mining in bump-prone strata (No. 9445). US Department of the Interior, Bureau of Mines, Washington, D.C., USA (1993).
  • [49] E. Esterhuizen, C. Mark, M.M. Murphy, Numerical model calibration for simulating coal pillars, gob and overburden response. In: Proceedings of the 29th International Conference on Ground Control in Mining, West Virginia, pp 44-57 (2010).
  • [50] N. Yasitli, B. Ünver, 3D numerical modeling of longwall mining with top-coal caving. International Journal of Rock Mechanics and Mining Sciences 42, 219-235 (2005). DOI: https://doi.org/10.1016/j.ijrmms.2004.08.007.
  • [51] Q.S. Bai, S.H. Tu, X.G. Zhang, C. Zhang, Y. Yuan, Numerical modeling on brittle failure of coal wall in longwall face – a case study. Arabian Journal of Geosciences 7 (2013). DOI: https://doi.org/10.1007/s12517-013-1181-1.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64ebab68-9d95-488f-9430-57018509ff10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.