PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of Fe Modeling of Orthogonal Turning Process Using Cowper–Symonds Material Behavior Law

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article contains a literature review, experimental results, and a Finite Element Model (FEM) composition. Orthogonal turning tests were executed in the range of cutting speeds and feed rate, after every test chip was collected. Further investigation was done using FE model validation and experimentation, which uses results of the experimental zone in which the built-up edge did not form and the cutting itself is of even plastic deformation. The essence of this research is that the adequacy of the composed FE model to the real physical process should conform not only to the evaluation of cutting forces, but also to the evaluation of chip form, that is, segmentation frequency.
Rocznik
Strony
249–--263
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Kaunas University of Technology (KTU), Department of Engineering Design Faculty of Mechanical Engineering and Mechatronics Kestučio St. 27, LT-44312 Kaunas, Lithuania
  • Kaunas University of Technology (KTU), Department of Engineering Design Faculty of Mechanical Engineering and Mechatronics Kestučio St. 27, LT-44312 Kaunas, Lithuania
Bibliografia
  • 1. Childs T., Maekawa K., Obikawa T., Yamane Y., Metal machining. Theory andapplications, London, 2000.
  • 2. Zatarain M., Manufacturing technologies: current researching trends, 5th International Conference on High Speed Machining, pp. 1–38, Metz, France, 2006.
  • 3. Xie J.Q., Bayoumi A.E., Zbib H.M., FEA modeling and simulation of shear localized chip formation in metal cutting, Int. J. of Machine Tools & Manufacture, 38, 1067–1087, 1998.
  • 4. Rech J., Yen Y.C., Hamdi H., Altan T., Bouzakis K.D., Influence of cutting edge radius of coated tool in orthogonal cutting of alloy steel, Materials Processing and Design: Modeling, Simulation and Applications – NUMIFORM 2004 – Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, AIP Conference Proceedings, Volume 712, pp. 1402–1407, 2004.
  • 5. Yen Y.C., Jain A., Altan T., A finite element analysis of orthogonal machining using different tool edge geometries, Journal of Materials Processing Technology, 146, 1, 72–81, 2004.
  • 6. Astakhov V.P., A treatise on material characterization in the metal cutting process. Part 2: Cutting as the fracture of workpiece material, J. of Materials Processing Technology, 96, 34–41, 1999.
  • 7. Bouzakis K.D., Michailidis N., Skordaris G., Kombogiannis S., Hadjiyiannis S., Efstathiuo K., Erkens G., Rambadt S., Wirth I., Effect of cutting edge radius and its manufacturing procedure, on the milling performance of PVD coated cemented carbide inserts, Annals of the CIRP, 51, 61–64, 2002.
  • 8. Hamman J.C., Grolleau V., Le Maitre F., Machinability improvement of steles at high cutting speeds – study of tool/work material interaction, Annals of the CIRP, 45, 87–92, 1996.
  • 9. Guo Y.B., An integral method to determine the mechanical behavior of materials in metal cutting, J. of Materials Processing Technology, 142, 72–81, 2003.
  • 10. Guo Y.B., Liu C.R., Residual stress formation mechanism and its control by sequential cuts, Transactions of Namri/ASME, 28, 179–184, 2000.
  • 11. Baker M., Finite element investigation of the flow stress dependence of chip formation, J. of Materials Processing Technology, 167, 1, 1–13, 2005.
  • 12. Zhang Y.C., Mabrouki T., Nelias D., Gong Y.D., Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach, Finite Elem. Anal. Des., 47, 7, 850–863, 2011.
  • 13. Garcia Aranda M.L., Etude thermo-m´ecanique et mod´elisation num´erique de l’emboutissage ´r chaud de l’Usibor 1500 [in French], PhD–Thesis, Ecole des Mines de Paris, 2004.
  • 14. Chigurupati P., Jinn J.T., Oh J.Y., Yin Y., Zhang H., Wu W.T., Advances in Machining Process Modeling, AIP Conference Proceedings, 712, 2004.
  • 15. Hua J., Shivrupi R., Cheng X., Bedekar V., Matsumoto Y., Haschimoto F., Watkins T.R., Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry, Materials Science and Engineering, 394, 238–248, 2005.
  • 16. Arrazola P.J., Done U., Villar J.A., Marya S., Finite element modelling: a qualitative tool to study high speed machining, 5th International Conference on High Speed Machining, pp. 239–246, Metz, France, 2006.
  • 17. Filonenko S.N., Metal cutting [in Russian], Kiev, 1969.
  • 18. Skiedraite I., Kuwahara M., Fuji H., Contact tangential method for measurement of tool geometry [in Japanese], Patent No 37163310, Japan.
  • 19. Skiedraite I., Sleiniute V., Measurement of tool – edge geometry, Mechanics, 6, 50, 64–67, 2004.
  • 20. Raczy A., Altenhof W.J., Alpas A.T., An Eulerian Finite Element Model of the Metal Cutting Process, Proceedings of 8th international Ls–Dyna Users conference, 11–25, 2004.
  • 21. Baker M., Rosler J., Siemers C., A finite element model of high speed metal cutting with adiabatic shearing, Computers & Structures, 80, 495–513, 2002.
  • 22. Fallbohmer P., Rodriguez C.A., Ozel T., Altan T., High-speed machining of cast iron and alloy steels for die and mould manufacturing, J. of Materials Processing Technology, 98, 104–115, 2000.
  • 23. LS–DYNA Theoretical manual, Livermore Software Technology Corporation, 1998.
  • 24. Shaw Milton C., Metal cutting principles, Oxford, 1997.
  • 25. Granovski G.I., Granovski V.G., Metal cutting [in Russian], Moscow, 1985.
  • 26. Molinari A., Moufki A., A new thermomecanical model of cutting applied to turning operations. Part 1, Theory, Int. J. of Machine Tools and Manufacture, 45, 166–180, 2005.
  • 27. Moufki A., Contribution ´r la mod´elisation de l‘usinage par une approche thermo viscoplastique. Application la coupe, orthogonale et oblique [in French], PhD–Thesis, University of Metz, 1998.
  • 28. Barauskas R., Abraitiene A., Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA, International Journal of Impact Engineering, 34, 1286– 1305, 2007.
  • 29. Dey S., Borvik T., Hopperstad O.S., Langseth M., On the influence of fracture criterion in projectile impact of steel plates, Computational Materials Science, 38, 176– 191, 2006.
  • 30. Abukhshim N.A., Mativenga P.T., Sheikh M.A., Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, 46, 7-8, 782–800, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64e637e1-ae65-403b-a876-af0b94353e02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.