Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The governing equations for a homogeneous and isotropic thermoelastic medium are formulated in the context of coupled thermoelasticity, Lord and Shulman theory of generalized thermoelasticity with one relaxation time, Green and Lindsay theory of generalized thermoelasticity with two relaxation times, Green and Nagdhi theory of thermoelasticity without energy dissipation and Chandrasekharaiah and Tzou theory of thermoelasticity. These governing equations are solved to obtain general surface wave solutions. The particular solutions in a halfspace are obtained with the help of appropriate radiation conditions. The two types of boundaries at athe surface of a half-space are considered namely, the stress free thermally insulated boundary and stress free isothermal boundary. The particular solutions obtained in a half-space satisfy the relevant boundary conditions at the free surface of the half-space and a frequency equation for the Rayleigh wave speed is obtained for both thermally insulated and isothermal cases. The non-dimensional Rayleigh wave speed is computed for aluminium metal to observe the effects of frequency, thermal relaxation time and different theories of thermoelasticity.
Rocznik
Tom
Strony
661--673
Opis fizyczny
Bibliogr. 34 poz., wykr.
Twórcy
autor
- Department of Mathematics, Post Graduate Government College, Sector-11 Chandigarh - 160 011, India
autor
- Hephzibah High School, 4558 Brothersville Road Hephzibah, GA 30815, INDIA
Bibliografia
- [1] Biot M.A. (1956): Thermoelasticity and irreversible thermodynamics. J. Appl. Phys., vol.2, pp.240-253.
- [2] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. J. Elasticity, vol.2, pp.1-7.
- [3] Lord H. and Shulman Y. (1967): A generalised dynamical theory of thermoelasticity. J. Mech. Phys. Solids, vol.15, pp.299-309.
- [4] Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. J. Elast., vol.31, pp.189-208.
- [5] Hetnarski R.B. and Ignaczak J. (1999): Generalized thermoelasticity. J. Thermal Stresses, vol.22, pp.451-476.
- [6] Ignaczak J. and Ostoja-Starzewski M. (2009): Thermoelasticity with Finite Wave Speeds. Oxford University Press.
- [7] Deresiewicz H. (1960): Effect of boundaries on waves in a thermo-elastic solid: Reflection of plane waves from plane boundary. J. Mech. Phys. Solids, vol.8, pp.164-172.
- [8] Sinha A.N. and Sinha S.B. (1974): Reflection of thermoelastic waves at a solid half space with thermal relaxation. J. Phys. Earth, vol.22, pp.237-244.
- [9] Sinha S.B. and Elsibai K.A. (1996): Reflection of thermoelastic waves at a solid half-space with two thermal relaxation times. J. Thermal Stresses, vol.19, pp.763-777.
- [10] Sinha S.B. and Elsibai K.A. (1997): Reflection and refraction of thermoelastic waves at an interface of two semiinfinite media with two thermal relaxation times. J. Thermal Stresses, vol.20, pp.129-146.
- [11] Sharma J.N., Kumar V. and Chand D. (2003): Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Thermal Stresses, vol.26, pp.925-942.
- [12] Singh B. (2008): Effect of hydrostatic initial stresses on waves in a thermoelastic solid half-space. Applied Math. Comp., vol.198, pp.494-505.
- [13] Singh B. (2010): Reflection of plane waves at the free surface of a monoclinic thermoelastic solid half-space. European J. Mech. A-Solids, vol.29, pp.911-916.
- [14] Singh M.C. and Chakraborty N. (2015): Reflection of a plane magneto-thermoelastic wave at the boundary of a solid half-space in presence of initial stress. Appl. Math. Modelling, vol.39, pp.1409-1421.
- [15] Wei W., Zheng R., Liu G. and Tao H (2016): Reflection and refraction of P wave at the interface between thermoelastic and porous thermoelastic medium. Transport in Porous Media, vol.113, pp.1-27.
- [16] Li Y., Li L., Wei P. and Wang C. (2018): Reflection and refraction of thermoelastic waves at an interface of two couple-stress solids based on Lord-Shulman thermoelastic theory. Appl. Math. Modelling, vol.55, pp.536-550.
- [17] Rayleigh L. (1885): On waves propagated along the plane surface of an elastic solid. Proc. R. Soc. London, Ser. A, vol.17, pp.4-11.
- [18] Lockett F.J. (1958): Effect of the thermal properties of a solid on the velocity of Rayleigh waves. J. Mech. Phys. Solids, vol.7, pp.71-75.
- [19] Flavin J.N. (1962): Thermoelastic Rayleigh waves in a prestressed medium. Math. Proc. Cambridge Phil. Soc., vol.58, pp.532-538.
- [20] Chadwick P. and Windle D.W. (1964): Propagation of Rayleigh waves along isothermal and insulated boundaries. Proc. R. Soc. Lond. A, vol.280, pp.47-71.
- [21] Tomita S. and Shindo Y. (1979): Rayleigh waves in magneto-thermoelastic solids with thermal relaxation. Int. J. Eng. Sci, vol.17, pp.227-232.
- [22] Dawn N.C. and Chakraborty S.K. (1988): On Rayleigh wave in Green-Lindsay's model of generalized thermoelastic media. Ind. J. Pure Appl. Math, vol.20, pp.273-286.
- [23] Abd-Alla A.M. and Ahmed M. (1996): Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress. Earth, Moon, and Planets, vol.75, pp.185-197.
- [24] Ahmed S.M. (2000): Rayleigh waves in a thermoelastic granular medium under initial stress. Int. J. Math. Math. Sci., vol.23, pp.627-637.
- [25] Sharma J.N., Walia V. and Gupta S.K. (2008): Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. Int. J. Mech. Sci., vol.50, pp.433-444.
- [26] Abouelregal A. E. (2011): Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model. Int. J. Eng. Sci., vol.49, pp.781-791.
- [27] Mahmoud S.R. (2012): Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field. Meccanica, vol.47, pp.1561-1579.
- [28] Chirita S. (2013): On the Rayleigh surface waves on an anisotropic homogeneous thermoelastic half-space. Acta Mech., vol.224, pp.657-674.
- [29] Singh B. (2014): Propagation of Rayleigh wave in a thermoelastic solid half-space with microtemperatures. Int. J. Geophys., Article ID 474502, 6 pages, http://dx.doi.org/10.1155/2014/474502 (2014).
- [30] Bucur A.V., Passarella F. and Tibullo V. (2014): Rayleigh surface waves in the theory of thermoelastic materiale with voids. Meccanica, vol.49, pp.2069-2078.
- [31] Passarella F., Tibullo V. and Viccione G. (2017): Rayleigh waves in isotropic strongly elliptic thermoelastic materials with microtemperatures. Meccanica, vol.52, pp.3033-3041.
- [32] Biswas S., Mukhopadhyay B. and Shaw S. (2017): Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Thermal Stresses, vol.40, pp.403-419.
- [33] Vashishth A.K. and Sukhija H. (2017): Coupled Rayleigh waves in a 2-mm piezoelectric layer over a porous piezo-thermoelastic half-space. Acta Mechanica, vol.228, pp.773-803.
- [34] Tzou D.Y. (1995): A unified approach for heat conduction from macro to micro-scales. J. Heat Transfer, vol.117, pp.8-16.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64e1a617-534c-4d03-89ce-f538a3b27432