PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Atmosphere on the Type of Evolved Gases from Phenolic Binders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of harmful casting resins has been present in foundries for many years. Manufacturers are introducing new products that contain in their composition environmentally and eco-friendly ingredients. Unfortunately, not all types of technology can be used, sometimes environmental benefits are disproportionate to the quality of castings and their price. In the foundry industry, the most popular binders are based on organic compounds (often carcinogenic) and other harmful substances. Due to strict legal regulations regarding environmental protection, as well as care for the foundry's workers' comfort - their occurrence should be reduce to a minimum. These compounds often behave also depending on the conditions of use (temperature, atmosphere). The application of various methods of thermal analysis and spectroscopic methods allows to verify the mechanism of resin decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. For analysis the resins from cold-box technology, were used TG–DTG–DSC, Py-GC/MS methods and specified the course of changes occurring in combination of different atmosphere.
Rocznik
Strony
31--36
Opis fizyczny
Bibliogr. 16 poz., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Kraków, Poland
Bibliografia
  • [1] Li, C. et al.(2016). Silicone-modified phenolic resin: Relationships between molecular structure and curing behavior. Thermochimica Acta. 639, 53-65. DOI: 10.1016/j.tca.2016.07.011.
  • [2] Żymankowska-Kumon, S. & Kolczyk, J. (2016). Chromato-graphic analysis of selected products of thermal decomposition of core sands made in cold-box technology. Transactions of the Foundry Research Institute. 16(4), 369-378. DOI: 10.7356/iod.2016.25.
  • [3] Reduction of foundry odor emissions by use of new generations of organic binders, materials from Hüttenes-Albertus.
  • [4] Fabbri, D. & Vassura, I. (2006). Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. Journal of Analysis and Applied Pyrolysis. 75, 150-158. DOI: 10.1016/j.jaap.2005.05.003.
  • [5] Fox, J.R., Adamovits, M. & Henry, C. (2002). Strategies for Reducing Foundry Emissions. AFS Transactions. 110, 1299-1309.
  • [6] Fang, S. et al. (2015). Preparation and curing behavior of silicone-modified phenolic resin. Applied Mechanics and Materials. 713-715, 2798-2803. DOI: 10.4028/www.scienti fic.net/AMM.713-715.2798.
  • [7] Nason, H.K. (1939). Silicon modified phenolic resins and process for producing same. Patent US 2182208 A.
  • [8] Ahamad, T. & Alshehri, S.M. (2014). Thermal degradation and evolved gas analysis: A polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin. Arabian Journal of Chemistry. 7, 1140-1147. DOI: 10.1016/j.arabjc. 2013.04.013.
  • [9] Jiang, H. & Wang, J. et al. (2012). The pyrolysis mechanism of phenol formaldehyde resin. Polymer Degradation and Stability. 97(8), 1527-1533. DOI: 10.1016/j.polymde gradstab.2012.04.016.
  • [10] Poljanšek, I., Šebenik, U. & Krajnc, M. (2006). Characterization of phenol-urea-formaldehyde resin by inline FTIR Spectroscopy. Journal of Applied Polimer Science. 99, 2016-2028. DOI: 10.1002/app.22161.
  • [11] Zhao, Y., Yan, N. & Feng, M.W. (2013). Thermal degradation characteristic of phenol-formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta. 555, 46-52. DOI: 10.1016/j.tca.2012.12.002.
  • [12] Jiang, D. et al. (2009). Simulating the initial stage of phenolic resin carbonization via the reaxff reactive force field. J. Phys. Chem. A 113(25), 6891-6894. DOI: 10.1021/ jp902986u.
  • [13] Alonso, M.V. et al. (2011). Thermal degradation of lignin–phenol-formaldehyde and phenol-formaldehyde resol resins. Journal of Thermal Analysis and Calorimetry. 105(1), 349-356. DOI: 10.1007/s10973-011-1405-0.
  • [14] Grabowska, B., Kaczmarska, K., Bobrowski, A., Żymankowska-Kumon, S. & Kurleto-Kozioł, Ż. (2017). TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS Studies of Thermal Decomposition for Poly(sodium acrylate)/Dextrin (PAANa/D) – New Binder BioCo3. Journal of Casting & Materials Engineering. 1(1), 27-32. DOI: 10.7494/jcme. 2017.1.1.27.
  • [15] Żymankowska-Kumon, S., Bobrowski, A., Drożyński, D., Grabowska, B. & Kaczmarska, K. (2018). Effect of Silicate Modifier on the Emission of Harmful Compounds from Phenolic Resin used in Cold-Box Technology. Archives of Foundry Engineering. 18(1), 151-156.
  • [16] Dungan, R., Reeves III, J. (2005). Pyrolysis of Foundry Sand Resins: A Determination of Organic Products by Mass Spectrometry. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. 40, 1557-1567. DOI: 10.1081/ESE-200060630.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64da51b8-7eb2-4bc4-8775-768095b62d1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.