PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Photogrammetric reconstruction of changes in vertical river position using archival aerial photos: case study of the Czarny Dunajec River, Polish Carpathians

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rivers of the Polish Carpathians incised deeply during the twentieth century, but detailed information about the timing and amount of incision of their channels exists only for water-gauge cross sections. Applicability of photogrammetric extraction of digital elevation models (DEMs) from archival aerial photos for reconstructing changes in vertical river position was verifed in the study of a 3-km reach of the Czarny Dunajec River. DEMs extracted from a few sets of archival aerial photos from the years 1964–1994 together with recent orthophotos and DEMs were used in the analysis. Measurements taken in river cross sections spaced at 100-m intervals indicated that on average the lowest point of the channel bed lowered between 1964 and 2009 by 1.74±0.17 m, low-fow water surface by 1.57±0.07 m, active river channel by 1.54±0.12 m and the belt of river migration by 1.03±0.15 m. However, the change in vertical river position during the years 1964–2009 varied greatly along the reach, with the elevation of low-fow water surface lowered by up to 3.61±0.07 m in the upper part of the reach and increased by up to 1.34±0.07 m in its lower part. Combining the information about changes in vertical river position and the width of river migration belt yielded data about the change in sediment volume in the reach, with an average annual loss of sediment amounting to 256±37 m3 per 100-m channel segment. The study indicated that DEMs generated from archival aerial photos can be a useful tool in analysing recent vertical channel changes outside water-gauge stations.
Czasopismo
Rocznik
Strony
1205--1221
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Department of Environmental Engineering, Geomatics and Energetics, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  • Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
  • Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
  • Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
Bibliografia
  • 1. Betts HD, Trustrum NA, De Rose RC (2003) Geomorphic changes in a complex gully system measured from sequential digital elevation models, and implications for management. Earth Surf Process Landf 28:1043–1058. https://doi.org/10.1002/esp.500
  • 2. Bowman D, Svoray T, Devora S, Shapira I, Laronne JB (2010) Extreme rates of channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead See, Israel. Geomorphology 114:227–237. https://doi.org/10.1016/j.geomorph.2009.07.004
  • 3. Bravard JP, Amoros C, Pautou G, Bornette G, Bournaud M, des Châtelliers MC, Gibert J, Peiry JL, Perrin JF, Tachet H (1997) River incision in south-east France: morphological phenomena and ecological effects. Regul Rivers Res Manag 13:1–16
  • 4. Brookes A (1987) River channel adjustment downstream from channelization works in England and Wales. Earth Surf Process Landf 12:337–351
  • 5. Collins B, Dunne T (1989) Gravel transport, gravel harvesting and channel-bed degradation in rivers draining the southern Olympic Mountains, Washington, USA. Environ Geol Water Sci 13:213–224
  • 6. Czech W, Radecki-Pawlik A, Wyżga B, Hajdukiewicz H (2016) Modelling the flooding capacity of a Polish Carpathian river: a comparison of constrained and free channel conditions. Geomorphology 272:32–42. https://doi.org/10.1016/j.geomorph.2015.09.025
  • 7. Derose RC, Gomez B, Marden M, Trustrum NA (1998) Gully erosion in Mangatu Forest, New Zealand, estimated from digital elevation models. Earth Surf Process Landf 23:1045–1053
  • 8. Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng Geol 99:11–22. https://doi.org/10.1016/j.enggeo.2008.02.006
  • 9. Dudziak J (1965) Dzika eksploatacja kamienia w powiecie nowotarskim (Uncontrolled exploitation of rocks in the district of Nowy Targ). Ochrona Przyrody 31:161–187 (in Polish, with English summary)
  • 10. Florsheim JL, Chin A, Gaffney K, Slota D (2013) Thresholds of stability in incised “Anthropocene” landscapes. Anthropocene 2:27–41. https://doi.org/10.1016/j.ancene.2013.10.006
  • 11. Froehlich W (1980) Hydrologiczne aspekty pogłębiania koryt rzek beskidzkich (Deepening of stream channels in the Beskidy Mts—a hydrological aspect). Zesz Probl Postępów Nauk Roln 235:257–268 (in Polish, with English summary)
  • 12. GUGiK (1999) Wytyczne techniczne K-2.7. Zasady wykonywania prac fotolotniczych. GUGiK, Warszawa, p 150
  • 13. GUGiK (2001) Wytyczne techniczne K-2.8. Zasady wykonywania ortofotomap w skali 1:10000. GUGiK, Warszawa, p 74
  • 14. Hajdukiewicz M (2015) The potential accuracy of the survey of landform changes using archival aerial orthophotos: case study of the Białka River valley. In: Jasiewicz J, Zwoliński Z, Mitasova H, Hengl T (eds) Geomorphometry for geosciences. Adam Mickiewicz University, Poznań, pp 243–246
  • 15. Hajdukiewicz M, Romanyshyn I (2017) An accuracy assessment of spot heights on digital elevation model (DEM) derived from ALS survey: case study of Łysica massif. Struct Environ 31:125–132
  • 16. Hajdukiewicz H, Wyżga B (2019) Aerial photo-based analysis of the hydromorphological changes of a mountain river over the last six decades: the Czarny Dunajec, Polish Carpathians. Sci Total Environ 648:1598–1613. https://doi.org/10.1016/j.scitotenv.2018.08.234
  • 17. Hajdukiewicz H, Wyżga B, Zawiejska J (2019) Twentieth-century degradation of Polish Carpathian rivers. Quat Int 504:181–194. https://doi.org/10.1016/j.quaint.2017.12.011
  • 18. Keesstra SD, van Huissteden J, Vanderberghe J, Van Dam O, de Gier J, Pleizer ID (2005) Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 69:191–207. https://doi.org/10.1016/j.geomorph.2005.01.004
  • 19. Klimek K (1983) Erozja wgłębna dopływów Wisły na przedpolu Karpat (Vertical erosion of Vistula tributaries on the Carpathian foreland). In: Kajak Z (ed) Ekologiczne podstawy zagospodarowania Wisły i jej dorzecza. PWN, Warszawa-Łódź, pp 97–108 (in Polish, with English summary)
  • 20. Kondolf GM, Piégay H, Landon N (2002) Channel response to increased and decreased bedload supply from land use change: contrasts between two catchments. Geomorphology 45:35–51. https://doi.org/10.1016/S0169-555X(01)00188-X
  • 21. Korpak J (2007) The influence of river training on mountain channel changes (Polish Carpathian Mountains). Geomorphology 92:166–181. https://doi.org/10.1016/j.geomorph.2006.07.037
  • 22. Krzemień K (1981) Zmienność subsystemu korytowego Czarnego Dunajca (The changeability of the Czarny Dunajec channel subsystem). Zesz Nauk Uniw Jagiellońskiego Pr Geogr 53:123–137 (in Polish, with English summary)
  • 23. Krzemień K (2003) The Czarny Dunajec River, Poland, as an example of human-induced development tendencies in a mountain river channel. Landf Anal 4:57–64
  • 24. Kurczyński Z, Bakuła K (2013) Generowanie referencyjnego numerycznego modelu terenu o zasięgu krajowym w oparciu o lotnicze skanowanie laserowe w projekcie ISOK (Generation of countrywide reference digital terrain model from airborne laser scanning in ISOK Project). In: Kurczyński Z (ed) Geodezyjne Technologie Pomiarowe. PTFiT, Warszawa, pp 59–68 (in Polish, with English summary)
  • 25. Lach J, Wyżga B (2002) Channel incision and flow increase of the upper Wisłoka River, southern Poland, subsequent to the reafforestation of its catchment. Earth Surf Process Landf 27:445–462. https://doi.org/10.1002/esp.329
  • 26. Landon N, Piégay H, Bravard JP (1998) The Drome River incision (France): from assessment to management. Landsc Urban Plan 43:119–131
  • 27. Liébault F, Piégay H (2001) Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 36:167–186. https://doi.org/10.1016/S0169-555X(00)00044-1
  • 28. Michalowska K, Glowienka E (2008) Multi-temporal data integration for the changeability detection of the unique Słowiński National Park landscape. Int Arch Phot Rem Sens Spat Inf Sci 37:1017–1020
  • 29. Peiry JL (1987) Channel degradation in the middle Arve river, France. Regul Rivers Res Manag 1:183–188
  • 30. Piégay H, Peiry JL (1997) Long profile evolution of a mountain stream in relation to gravel load management: example of the middle Giffre River (French Alps). Environ Manag 21:909–919
  • 31. Prokešová R, Kardoš M, Medved’ová A (2010) Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115:90–101. https://doi.org/10.1016/j.geomorph.2009.09.033
  • 32. Radecki-Pawlik A, Wyżga B, Czech W, Mikuś P, Zawiejska J, Ruiz-Villanueva V (2016) Modelling hydraulic parameters of flood flows for a Polish Carpathian river subjected to variable human impacts. In: Kundzewicz ZW, Stoffel M, Niedźwiedź T, Wyżga B (eds) Flood risk in the upper Vistula river. Springer, Cham, pp 127–151. https://doi.org/10.1007/978-3-319-41923-7_7
  • 33. Rinaldi M (2003) Recent channel adjustments in alluvial rivers of Tuscany, central Italy. Earth Surf Process Landf 28:587–608. https://doi.org/10.1002/esp.464
  • 34. Rinaldi M, Wyżga B, Surian N (2005) Sediment mining in alluvial channels: physical effects and management perspectives. River Res Appl 21:805–828. https://doi.org/10.1002/rra.884
  • 35. Ruiz-Villanueva V, Stoffel M, Wyżga B, Kundzewicz ZW, Czajka B, Niedźwiedź T (2016) Decadal variability of floods in the northern foreland of the Tatra Mountains. Reg Environ Change 16:603–615. https://doi.org/10.1007/s10113-014-0694-9
  • 36. Schiefer E, Gilbert R (2007) Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology 88:167–178. https://doi.org/10.1016/j.geomorph.2006.11.003
  • 37. Simon A (1989) A model of channel response in disturbed alluvial channels. Earth Surf Process Landf 14:11–26
  • 38. Škarpich V, Hradecký J, Dušek R (2013) Complex transformation of the geomorphic regime of channels in the forefield of the Moravskoslezské Beskydy Mts.: case study of the Morávka River (Czech Republic). CATENA 111:25–40. https://doi.org/10.1016/j.catena.2013.06.028
  • 39. Surian N, Rinaldi M (2003) Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50:307–326. https://doi.org/10.1016/S0169-555X(02)00219-2
  • 40. Wheeler DA (1979) The overall shape of longitudinal profiles of streams. In: Pitty AF (ed) Geographical approaches to fluvial processes. Geoabstracts, Norwich, pp 241–260
  • 41. Williams GP, Wolman MG (1984) Downstream effects of dams on alluvial rivers. US Geol Surv Prof Pap 1286:1–83
  • 42. Wohl E (2004) Disconnected rivers: linking rivers to landscapes. Yale Univ. Press, New Haven, p 320
  • 43. Wyżga B (1993) River response to channel regulation: case study of the Raba River, Carpathians, Poland. Earth Surf Process Landf 18:541–556
  • 44. Wyżga B (1997) Methods for studying the response of flood flows to channel change. J Hydrol 198:271–288
  • 45. Wyżga B (1999) Estimating mean flow velocity in channel and floodplain areas and its use for explaining the pattern of overbank deposition and floodplain retention. Geomorphology 28:281–297
  • 46. Wyżga B (2001a) A geomorphologist’s criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians. Environ Manag 28:341–358. https://doi.org/10.1007/s002670010228
  • 47. Wyżga B (2001b) Impact of the channelization-induced incision of the Skawa and Wisłoka Rivers, southern Poland, on the conditions of overbank deposition. Regul Rivers Res Manag 17:85–100
  • 48. Wyżga B (2008) A review on channel incision in the Polish Carpathian rivers during the 20th century. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-bed rivers VI: from process understanding to river restoration. Elsevier, Amsterdam, pp 525–555. https://doi.org/10.1016/s0928-2025(07)11142-1
  • 49. Wyżga B, Hajdukiewicz H, Radecki-Pawlik A, Zawiejska J (2010) Eksploatacja osadów z koryt rzek górskich—skutki środowiskowe i procedury oceny (Exploitation of sediments from mountain river beds—environmental impact and evaluation procedures). Gosp Wodna 6:243–249 (in Polish, with English summary)
  • 50. Wyżga B, Zawiejska J, Radecki-Pawlik A, Hajdukiewicz H (2012) Environmental change, hydromorphological reference conditions and the restoration of Polish Carpathian rivers. Earth Surf Process Landf 37:1213–1226. https://doi.org/10.1002/esp.3273
  • 51. Wyżga B, Radecki-Pawlik A, Zawiejska J (2016a) Flood risk management in the Upper Vistula basin in perspective: Traditional versus alternative measures. In: Kundzewicz ZW, Stoffel M, Niedźwiedź T, Wyżga B (eds) Flood risk in the upper Vistula basin. Springer, Cham, pp 361–380. https://doi.org/10.1007/978-3-319-41923-7_18
  • 52. Wyżga B, Zawiejska J, Hajdukiewicz H (2016b) Multi-thread rivers in the Polish Carpathians: occurrence, decline and possibilities for restoration. Quat Int 415:344–356. https://doi.org/10.1016/j.quaint.2015.05.015
  • 53. Wyżga B, Zawiejska J, Radecki-Pawlik A (2016c) Impact of channel incision on the hydraulics of flood flows: examples from Polish Carpathian rivers. Geomorphology 272:10–20. https://doi.org/10.1016/j.geomorph.2015.05.017
  • 54. Zawiejska J, Krzemień K (2004) Human impact on the dynamics of the upper Dunajec River channel: a case study. Geogr Čas 56:111–124
  • 55. Zawiejska J, Wyżga B (2010) Twentieth-century channel change on the Dunajec River, southern Poland: patterns, causes and controls. Geomorphology 117:234–246. https://doi.org/10.1016/j.geomorph.2009.01.014
  • 56. Zawiejska J, Wyżga B, Radecki-Pawlik A (2015) Variation in surface bed material along a mountain river modified by gravel extraction and channelization, the Czarny Dunajec, Polish Carpathians. Geomorphology 231:353–366. https://doi.org/10.1016/j.geomorph.2014.12.026
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d8c6f8-ecf5-42e2-a41f-8c632714249c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.