PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation and calibration of SWAT model for Kollur River Basin, Kundapura Taluk, Udupi District, Karnataka, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research work has been carried out for the Kollur River Basin, Kundapura Taluk of Udupi District of Karnataka. Kollur River is tributaries of Chakra and Souparnika Rivers. The problem of seawater getting mixed with underground water tables has become acute in many gram panchayats like Maravanthe and Senapura, located near the seashore. Villages like Vandse and Chittur, situated some distance away from the sea, have another problem on hand. The drinking water sources of these villages have dried up due to the depletion of the water table. To understand the hydrology of this complex landscape, the SWAT-CUP model was calibrated and validated using the SUFI-2, considering 14 important hydrologic parameters based on literature sources. The SUFI-2 tool employs stochastic calibration, which recognizes and expresses model errors and uncertainties as ranges account for all underlying variables, conceptual framework, parameters, and observed values. Our watershed model has eight sub-basins and 126 Hydrological Response Units (HRU) to simulate hydrological processes. Climate data from 2007 to 2021 revealed that the most precipitation occurred from June to September, with a maximum of 789 mm in June and a low of 0 mm in January. The hydrographs of 95 PPU plots were obtained from single iterations (500 simulations). The p-factor and r-factor were found to be 0.15 and 1.59, respectively. The accuracy of the simulation findings between observed and model-generated streamflow values was satisfactory. The SWAT-CUP enhanced streamflow models by lowering parameter uncertainty. It can be concluded that less sensitive parameters require more time to reduce the uncertainty than more sensitive values due to wider confidential intervals.
Czasopismo
Rocznik
Strony
837--853
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
  • Department of Marine Geology, Mangalore University, Mangalore, India
  • Department of Marine Geology, Mangalore University, Mangalore, India
  • Department of Earth Science, Mysore University, Mysore, India
Bibliografia
  • 1. Abbaspour KC (2012) SWAT-CUP-2012.SWAT calibration and uncertainty program—a user manual. Swiss Federal Institute of Aquatic Science and Technology, Dübendorf.
  • 2. Abbaspour K (2013) SWATCUP 2012: SWAT calibration and uncertainty programs—A user manual. Eawag, Dübendorf, Switzerland, p 103
  • 3. Abbaspour KC (2015) SWAT calibration and uncertainty programs. 17–66.
  • 4. Abrishamchi A, Tajrishi M (2005) Interbasin water transfer in Iran. Paper presented at the Water conservation, reuse, and recycling: proceeding of an Iranian American workshop.
  • 5. Arnold JG, Srinivasan R, Muttiah RS, Williams R (1998) Large area hydrologic modeling and assessment part I: model development 1. JAWRA J Am Water Resour Assoc 34(1):73–89
  • 6. Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Van Liew MWJ (2012a) SWAT: Model use, calibration, and validation. 55(4), 1491–1508.
  • 7. Arnold J, Moriasi D, Gassman P, Abbaspour KC, White M, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew M, Kannan N, Jha M (2012b) SWAT: model use, calibration, and validation. Trans ASABE 55:1491–1508
  • 8. Central Ground Water Board (2012) Udupi district, South Western Region, Bangalore, Karnataka state (CGWB, 2012), August 2011–12.
  • 9. Chen M, Cui Y, Gassman PW, Srinivasan RJW (2021) Effect of watershed delineation and climate datasets density on runoff predictions for the Upper Mississippi River Basin using SWAT within HAWQS. Water 13(4):422
  • 10. Chiang L-C, Yuan Y (2015) The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrol Sci J 60(10):1690–1708
  • 11. Council NR (1993) Soil and water quality: an agenda for agriculture: National Academies Press.
  • 12. Di Luzio M, Arnold J, Srinivasan R (2004) Integration of SSURGO maps and soil parameters within a geographic information system and nonpoint source pollution model system. J Soil Water Conserv 59(4):123–133
  • 13. Douglas-Mankin K, Srinivasan R, Arnold JJ (2010) Soil and water assessment tool (SWAT) model: Current developments and applications. Trans ASABE 53(5):1423–1431
  • 14. Faramarzi M, Abbaspour KC, Schulin R, Yang H (2009) Modelling blue and green water resources availability in Iran. 23(3), 486-501.
  • 15. Feyereisen G, Strickland T, Bosch D, Sullivan DJT (2007) Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River watershed. Trans ASABE 50(3):843–855
  • 16. Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250
  • 17. Hargreaves GL, Hargreaves GH, Riley JPJJ (1985) Agricultural benefits for Senegal river basin. J Irrig Drain Eng 111(2):113–124
  • 18. Houshmand Kouchi D, Esmaili K, Faridhosseini A, Sanaeinejad SH, Khalili D, Abbaspour KCJW (2017) Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. 9(6), 384.
  • 19. http://www.diva-gis.org
  • 20. http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
  • 21. https://earthexplorer.usgs.gov/
  • 22. https://globalweather.tamu.edu/ [may be error sometime need to correct it]
  • 23. https://power.larc.nasa.gov/cgi-bin/agro.cgi? [Need to same format same as global weather]
  • 24. https://swat.tamu.edu/documentation/
  • 25. https://swat.tamu.edu/media/99082/cfsr_world.zip
  • 26. https://swat.tamu.edu/software/arcswat-12
  • 27. https://swat.tamu.edu/software/links/india-dataset/
  • 28. Jha M, Gassman PW, Secchi S, Gu R, Arnold J (2004) Effect of watershed subdivision on swat flow, sediment, and nutrient predictions 1. AWRA J Am Water Resour Assoc 40(3):811–825
  • 29. Khalid K, Ali MF, Abd Rahman NF, Mispan MR, Haron SH, Othman Z, Bachok MF (2016) Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia Eng 162:441–447
  • 30. Liao J, Liu X, Hu A, Song H, Chen X, Zhang Z (2020). Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). 10(1), 1–14.
  • 31. Luo Y, Su B, Yuan J, Li H, Zhang Q (2011). GIS techniques for watershed delineation of SWAT model in plain polders. 10, 2050-2057
  • 32. Mamo KHM, Jain MK (2013). Runoff and sediment modeling using SWAT in Gumera catchment, Ethiopia. 2013.
  • 33. McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245. https://doi.org/10.1080/00401706.1979.10489755
  • 34. Mehan S, Kannan N, Neupane RP, McDaniel R, Kumar SJC (2016) Climate change impacts on the hydrological processes of a small agricultural watershed. Wahsed 4(4):56
  • 35. Mehan S, Neupane RP, Kumar SJHCR (2017) Coupling of SUFI 2 and SWAT for improving the simulation of streamflow in an agricultural watershed of South Dakota. 8(3).
  • 36. Monteith JL (1965) Evaporation and environment. Paper presented at the Symposia of the society for experimental biology.
  • 37. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TLJT (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900
  • 38. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Retrieved from
  • 39. Poojashree. B. P and H. Gangadhara Bhat (2019), Geomorphometric analysis using remote sensing and GIS mapping in Kundapura Taluk, Udupi District, Karnataka, India. JASC: Journal of Applied Science and Computations. Volume VI, Issue VI, JUNE/2019. 2019ISSN NO: 1076–5131Page.
  • 40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes: the art of scientific computing. Cambridge Univ Press, Cambridge
  • 41. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: The art of scientific computing: Cambridge university press.
  • 42. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Rev 100(2):81–92
  • 43. Schuol J, Abbaspour KC, Yang H, Srinivasan R, Zehnder AJJWRR (2008) Modeling blue and green water availability in Africa. 44(7).
  • 44. Singh V, Bankar N, Salunkhe SS, Bera AK, Sharma JJCS (2013) Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. 1187–1199.
  • 45. Stitt M, Krapp AJPCE (1999) The molecular physiological basis for the interaction between elevated carbon dioxide and nutrients. Plant Cell Environ 22:583–622
  • 46. Tan ML, Liang J, Samat N, Chan NW, Haywood JM, Hodges KJW (2021) Hydrological extremes and responses to climate change in the kelantan river basin, malaysia, based on the CMIP6 highresmip experiments. Water 13(11):1472
  • 47. USDA, SJW, DC. (1972). National engineering handbook, section 4: Hydrology.
  • 48. van Griensven AV, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan, RJJ (2006). A global sensitivity analysis tool for the parameters of multi-variable catchment models. 324(1–4), 10–23.
  • 49. Wagener T, Kollat JJEM, Software, (2007) Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environ Model Software 22(7):1021–1033
  • 50. Wang Y, Jiang R, Xie J, Zhao Y, Yan D, Yang S (2019) Soil and water assessment tool (SWAT) model: a systemic review. J Coastal Res 93:22–30
  • 51. Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen YJN (2015) Managing nitrogen for sustainable development. Nature 528(7580):51–59
  • 52. Zhang Z, Liu J, Huang J (2020) Hydrologic impacts of cascade dams in a small headwater watershed under climate variability. J Hydrol 590:125426
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d7fa6d-4ae7-4ff6-a5ee-ba31c1183351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.