PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological and Molecular Diversity of Benthic Cyanobacteria Communities Versus Environmental Conditions in Shallow, High Mountain Water Bodies in Eastern Pamir Mountains (Tajikistan)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In mountain desert ecosystems, wetlands around saline and freshwater lakes allow various organisms to thrive and sometimes serve as the only source of drinking water for wild and domestic animals. We present results concerning diversity and structure of cyanobacterial inoculum from Eastern Pamir Mountains' benthic sediments, collected from small water bodies with contrasting salinity, temperature and other chemical parameters. We used morphological identification and molecular NGS techniques based on the amplification of the V3-V4 hypervariable region of 16S rRNA gene. Only a few cyanobacterial taxa have been identified in the preserved samples, while 27 taxa were successfully isolated and identified from the benthic sediments. Metagenomic analysis revealed that the cyanobacterial contribution to benthic bacterial communities was low. Representatives of the order Nostocales dominated in the samples, followed by Synechococcales, while contributions of Oscillatoriales and Chroococcales was much lower. The correlation matrix for the amplicon-based composition of samples clustered together samples of similar salinity and temperature. However, in hierarchical clustering of taxonomic structure of samples, communities with similar structures were not grouped by salinity or temperature. These results suggest that salinity and to some extent temperature, influence the composition of the inoculum, although the structure of the cyanobacterial communities is further shaped by other factors. Our study also demonstrated that the benthic inoculum for cyanobacterial communities contained potentially toxic taxa characteristic of both benthic and planktonic communities.
Rocznik
Strony
286--304
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Warsaw, Poland
  • University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
  • University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
  • Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
  • Kh.Yu. Yusufbekov Pamir Biological Institute of the Academy of Sciences of the Republic of Tajikistan
  • University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Warsaw, Poland
  • University of Warsaw, Department of Plant Ecology and Environmental Conservation, Faculty of Biology, Warsaw, Poland
Bibliografia
  • 1. Barinova S., Boboev M., Hisoriev H. 2016 – Freshwater algal diversity of the South-Tajik Depression in a high-mountainous extreme environment, Tajikistan – Turk. J. Bot. 39: 535-546, http://doi.org/10.3906/bot-1406-45.
  • 2. Barinova S., Niyatbekov T. 2018 – Alpha-biodiversity of nondiatom algae in the Pamir aquatic habitats, Tajikistan – BIJ 2: 236-263, http://doi.org/10.15406/bij.2018.02.00065.
  • 3. Beversdorf L. J., Miller T. R., McMahon K. D. 2013 – The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake – PLoS ONE 8: e56103.
  • 4. Bukowska A., Bielczyńska A., Karnkowska A., Chróst R., Jasser I. 2014 – Molecular (PCR-DGGE) versus morphological approach: analysis of taxonomic composition of potentially toxic cyanobacteria in freshwater lakes – Aquatic Biosystems 10: 2, https://doi.org/10.1186/2046-9063-10-2.
  • 5. Bukowska A., Kaliński T., Koper M., Kostrzewska-Szlakowska I., Kwiatowski J., Mazur-Marzec H., Jasser I. 2017 – Predicting blooms of toxic cyanobacteria in eutrophic lakes with diverse cyanobacterial communities – Sci. Rep. 7: 8342, https://doi.org/10.1038/s41598-017-08701-8.
  • 6. Chernova E., Sidelev S., Russkikh I., Voyakina E., Babanazarova O., Romanov R., Kotovshchikov A., Mazur-Marzec H. 2017 – Dolichospermum and Aphanizomenon as neurotoxins producers in some Russian freshwaters – Toxicon, 130: 47-55, doi.org/10.1016/j.toxicon.2017.02.016.
  • 7. Codd G. A., Azevedo S. M. F. O., Bagchi S. N., Burch M. D., Carmichael W. W., Harding W. R., Kaya K., Utkilen H. C. 2005 – A Global Network for Cyanobacterial Bloom and Toxin Risk Management Initial Situation Assessmentand Recommendations by HP-VI – Technical Documents in Hydrology, No. 76 UNESCO, Paris.
  • 8. de los Ríos A., Wierzchos J., Sancho L. G., Ascaso C. 2004 – Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy – FEMS Microbiol. Ecol. 50: 143-152.
  • 9. Dorador C., Vila I., Imhoff J. F., Witzel K.-P. 2008 – Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion? – FEMS Microbiol. Ecol. 64: 419-432.
  • 10. Garet V., Humpage A. R., Huang Q., Monis P., Brookes J. D. 2017 – Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs – Water Res. 124: 454-464.
  • 11. Golubic S., Seong-Joo L., Browne K. M. 2000 – Cyanobacteria: Architects of Sedimentary Structures (In: Microbial Sediments, Eds: R. E. Riding, S. M. Awramik) – Berlin. Springer. pp. 57-67.
  • 12. Guillard R. L., Lorenzen C. J. 1972 – Yellow green algae with chlorophyllide – J. Phycol. 8: 10-14, https://doi.org/10.1111/j.15298817.1972.tb03995.
  • 13. Hach Company 2005 – Water analysis handbook. Drinking Water, Wastewater, Seawater, Boiler/Cooling Water, Ultrapure Water. 4th edition, revision 3 – Loveland, Colorado, U.S.A. Hach Company, 1274 pp.
  • 14. Han P., Shen S., Jia S., Wang H., Zhong C., Tan Z., Lv H. 2015 – Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis – World J. Microbiol. Biotechnol. 31: 1061, available from https://doi.org/10.1007/s11274-015-1856-8.
  • 15. Jasser I., Królicka A., Jakubiec K., Chróst R. J. 2013 – Seasonal and spatial diversity of picocyanobacteria community in the Great Mazurian Lake system derived from DGGE analyses of 16S rDNA and cpcBAIGS markers – J. Microbiol. Biotechnol. 23: 739-749.
  • 16. Khomutovska N., Jerzak M., Kostrzewska-Szlakowska I., Kwiatowski J., Suska-Malawska M., Jasser I. 2017 – Life in extreme habitats: diversity of endolithic microorganisms from cold desert ecosystem of eastern Pamir – Pol. J. Ecol. 65: 303-319.
  • 17. Kleinteich J., Wood S. A., Küpper F. C., Camacho A., Quesada A., Frickey T., Dietrich D. R. 2012 – Temperature-related changes in polar cyanobacterial mat diversity and toxin production – Nat. Clim. Change, 2: 356-360, https://doi.org/10.1038/nclimate1418.
  • 18. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. 2013 – Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies – Nucleic Acids Res. 41(1):e1, https://doi.org/10.1093/nar/gks808pmid:22933715.
  • 19. Komárek J., Anagnostidis K. 1998 – Cyanoprokaryota 1st ed. Chroococcales (In: Süsswasserflora von Mitteleuropa 19/1, Eds: H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer) – Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, 548 pp.
  • 20. Komárek J. 2013 – Cyanoprokaryota. 3rd ed. Heterocytous genera (In: Süswasserflora von Mitteleuropa, Freshwater flora of Central Europe, Eds: B. Büdel, G. Gärtner, L. Krienitz, M. Schagerl) – Springer: Spektrum Berlin, Heidelberg, 113 pp.
  • 21. Komárek J. 2017 – Several problems of the polyphasic approach in the modern cyanobacterial system – Hydrobiologia, 811: 7-17.
  • 22. Komárek J., Anagnostidis K. 2005 – Cyanoprokaryota. 2ed ed. Oscillatoriales (In: Süsswasserflora von Mitteleuropa, Eds: B. Büdel, L. Krienitz, G. Gärtner, M. Schagerl) – Elsevier: Spektrum, Heidelberg, 759 pp.
  • 23. Komárek J., Kaštovský J., Mareš J., Johansen J. R. 2014 – Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach – Appl. Preslia, 86: 295-235.
  • 24. Loza V., Berrendera E., Perona E., Mateo P. 2013 – Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): morphological, molecular, and ecological approaches – J. Phycol. 49: 282-297.
  • 25. Mętrak M., Chachulski Ł., Dovutsho D., Pawlikowski P., Rojan E., Sulwinski M., Suska Malawska M. 2017 – Nature's patchwork: How water sources and soil salinity determine the distribution and structure of halophytic plant communities in arid environments of the Eastern Pamir – PLoS ONE, 12(3): e0174496.
  • 26. Mętrak M., Sulwiński M., Chachulski Ł., Wilk M., Suska-Malawska M. 2015 – Creeping Environmental Problems in the Pamir Mountains: Landscape Conditions, Climate Change, Wise Use and Threats (In: Climate Change Impacts on High-Altitude Ecosystems, Eds: M. Öztürk, K. R. Hakeem, I. Faridah-Hanum, R. Efe) – Springer. pp. 665-695.
  • 27. Michaud C. L., Foran D. R. 2011 – Simplified field preservation of tissues for subsequent DNA analyses – J. Forensic Sci. 56: 846-852.
  • 28. Mohamed Z. A. 2008 – Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia – Toxicon, 51 (1): 1727, https://doi.org/10.1016/j.toxicon.2007.07.007.
  • 29. Niyatbekov T. P. 2006 – [The Algal flora of the Eastern Pamir lakes (Tajikistan)] – Ph.D. thesis, Institute of botany, Plant physiology and genetics, Academy of Science Republic of Tajikistan (in Russian).
  • 30. Oren A. 2012 – Salts and brines (In: Ecology of Cyanobacteria II: Their Diversity in Space and Time, Ed: B. A. Whitton) – Dordrecht: Springer. pp. 401-26.
  • 31. Pei A. Y., Oberdorf W. E., Nossa C. W., Agarwal A., Chokshi P., Gerz E. A., Jin Z., Lee P., Yang L., Poles M., Brown S. M., Sotero S., DeSantis T., Brodie E., Nelson K., Pei Z. 2010 – Diversity of 16S rRNA genes within individual Prokaryotic genomes – Appl. Environ. Microbiol. 76: 3886-3897, https://doi.org/10.1128/aem.02953-09.
  • 32. Pessi S. I., Lara Y., Durieu B., de C Maalouf P., Verleyn E., Wilmotte A. 2018 – Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats – FEMS Microbiol. Ecol. 94: 1-13.
  • 33. Pitois F., Fastner J., Pagotto C., Dechesne M. 2018 – Multi-Toxin Occurrences in Ten French Water Resource Reservoirs – Toxins, 10: 283.
  • 34. Pushkareva E., Pessi I. S., Wilmotte A., Elster J. 2015 – Cyanobacterial community composition in Arctic soil crusts at different stages of development – FEMS Microbiol. Ecol. 91: 1-10.
  • 35. Quiblier C., Wood S. A., Echenique I., Heath M., Villeneuve A., Humbert J. F. 2013 – A review of current knowledge on toxic benthic freshwater cyanobacteria - ecology, toxin production and risk management – Water Res. 47: 5464-5479.
  • 36. Rengefors K., Gustafsson S., Stål-Delbanco A. 2004 – Factors regulating the recruitment of cyanobacterial and eukaryotic phytoplankton from littoral and profundal sediments – Aquat. Microb. Ecol. 36: 213-226, http://dx.doi.org/10.3354/ame036213.
  • 37. Rippka R., Deruelles J., Waterburg J. B., Herdman M., Stanier R. Y. 1979 – Generic assignments, strain histories and properties of pure culture of Cyanobacteria – Microbiology, 111: 1-61.
  • 38. Rolland D. C., Vincent W. F. 2014 – Characterization of phytoplankton seed banks in the sediments of a drinking water reservoir – Lake Reserv. Manage. 30: 371-380, https://doi.org/10.1080/10402381.2014.950438.
  • 39. Schirrmeister B. E., Dalquen D. A., Anisimova M., Bagheri H. C. 2012 – Gene copy number variation and its significance in cyanobacterial phylogeny – BMC Microbiol. 12: 177, http://doi.org/10.1186/1471-2180-12-177.
  • 40. Schöne K., Jähnichen S., Ihle T., Ludwig F., Benndorf J. 2010 – Arriving in better shape: Benthic Microcystis as inoculum for pelagic growth – Harmful Algae, 9: 494-503, http://dx.doi.org/10.1016/j.hal.2010.03.005.
  • 41. Srivastava A. K., Bhargava P., Kumar A., Rai L. Ch. and Neilan B. A. 2009. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India – Saline Systems, 5: 4, https://doi.org/10.1186/1746-1448-5-4.
  • 42. Ståhl-Delbanco A., Hansson L. A., Gyllström M. 2003 – Recruitment of resting stages may induce blooms of Microcystis at low N:P ratios – J. Plankton Res. 25: 1099-1106, https://doi.org/10.1093/plankt/25.9.1099.
  • 43. Stal L. J. 1995 – Physiological ecology of cyanobacteria in microbial mats and other communities – New Phytol. 131: 1-32.
  • 44. Stal L. J. 2012 – Cyanobacterial mats and stromatolites (In: Ecology of cyanobacteria II: their diversity in space and time, Ed: B. A. Whitton) – Springer Netherlands, Dordrecht, pp. 65-125.
  • 45. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. 2007 – Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy – Appl. Environ. Microbiol. 73: 5261-7.
  • 46. Wood S. A. 2017 – Advice on benthic cyanobacteria health risks and communication strategies in the Southland region. Prepared for Environment Southland – Cawthron Report, No. 3075. 19 pp.
  • 47. Wood S. A., Holland P. T., Stirling D. J., Briggs L. R., Sprosen J., Ruck J. G., Wear R. G. 2006 – Survey of cyanotoxins in New Zealand water bodies between 2001 and 2004 – New Zeal. J. Mar. Fresh. Res. 40: 585-597, https://doi.org/10.1080/00288330.2006.9517447.
  • 48. Wynn-Williams D. D. 2000 – Cyanobacteria in desert - life at the limit? (In: The ecology of cyanobacteria. Their diversity in time and space, Eds: B. A. Whitton, M. Potts) – Kluwer Academic Publishers, Dordrecht, pp. 341-366.
  • 49. Yang J., Ma L., Jiang H., Wu G., Dong H. 2016 – Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes – Sci. Rep. 6:25078, https://doi.org/10.1038/srep25078.
  • 50. Zhang K., Shi Y., Cui X., Yue P., Li K., Liu X., Tripathi B. M., Chu H. 2019 – Salinity is a key determinant for soil microbial communities in a desert ecosystem – mSystems 4:e00225-18. https://doi.org/10.1128/mSystems.00225-18.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d7902e-960d-4dd6-971a-1d8a5c62059d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.