PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing the efficiency of different structural skeleton for base isolated domes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structural concept of the dome dates back to the Pantheon in Rome. It is used as the cover of many churches and mosques all around the world. Light solutions, with a well-visible dome-shaped truss skeleton, are often preferred in modern architecture. Base isolation techniques can be adopted to mitigate the seismic effects. This paper aims to investigate the efficiency of different designs for the truss skeleton. To solve the problem, one has to assign the constraints, the materials and the geometry of the dome, its supporting structure and the isolation devices (number, locations, and type). The screening of the effects of different scheme assumptions on structural behaviour provides a better insight into the problem.
Rocznik
Strony
art. no. e143555
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Bibliografia
  • [1] D. Losanno, C. Spizzuoco, and G. Serino, “Seismic isolation, monitoring, identification and modelling of the “Our Lady of Tears” shrine in Syracuse,” Progettazione Sismica, vol. 5, no. 1, pp. 31–62, 2014, doi: 10.7414/PS.5.1.31-62. (in Italian)
  • [2] B. Basu, et al., “A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe,” Struct. Control. Health Monit., vol. 21, no. 12, pp. 1414–1436, 2014.
  • [3] S. Casciati and L. Faravelli, “An actively controlled prototype for educational buildings,” Smart. Struct. Syst., vol. 25, no. 1, pp. 105–109, 2020.
  • [4] F. Casciati and S. Casciati, “Amelioration and retrofitting of educational buildings,” Earthq. Eng. Eng. Vib., vol. 17, no. 1, pp. 47–51, 2018.
  • [5] S. Casciati, F. Casciati, and L. Faravelli, “Focus on the retrofit of educational buildings,” Proceedings ICONHIC (International Conference on Natural Hazards & Infrastructures) 2019, Greece, 2019, p. 328.
  • [6] A. Kaveh and S. Talatahari, “Geometry and topology optimization of geodesic domes using charged system search,” Struct. Multidiscip. Optim., vol. 43, no. 2, pp. 215–229, 2011.
  • [7] S. Gholizadeh and H. Barati, “Topology optimization of nonlinear single layer domes by a new metaheuristic,” Steel Compos. Struct., vol. 16, no. 6, pp. 681–701, 2014.
  • [8] A. Kaveh and M. Rezaei, “Topology and geometry optimization of different types of domes using ECBO,” Adv. Comput. Des., vol. 1, pp. 1–25, 2016, doi: 10.12989/acd.2016.1.1.001.
  • [9] D. Pilarska, “Two subdivision methods based on the regular octahedron for single- and double-layer spherical geodesic domes,” Int. J. Space Struct., vol. 35, no. 4, pp. 160–173, 2020.
  • [10] M.P. Saka, “Optimum geometry design of geodesic domes using harmony search algorithm,” Adv. Struct. Eng., vol. 10, no. 6, pp. 595606, 2007.
  • [11] M. Babaei and M. R. Sheidai, “Automated optimal design of double-layer latticed domes using particle swarm optimization,” Struct. Multidiscip. Optim., vol. 50, pp. 221–235, 2014.
  • [12] J. Ye and M. Lu, “Optimization of domes against instability”, Steel Compos. Struct., vol. 28, no. 4, pp. 427–438, 2018.
  • [13] A. Kaveh, M. Rezaei, and M.R. Shiravand, “Optimal design of nonlinear large-scale suspendome using cascade optimization,” Int. J. Space Struct., vol. 33, no. 1, pp. 3–18, 2018.
  • [14] Y. Guan, L.N. Virgin, and D. Helm, “Structural behavior of shallow geodesic lattice domes,” Int. J. Solids Struct., vol. 155, no. 15, pp. 225–239, 2018.
  • [15] D. Pilarska and T. Maleska, “Numerical analysis of steel geodesic dome under seismic excitations,” Materials, vol. 14, p. 4493, 2012, doi: 10.3390/ma14164493.
  • [16] J. Li and J. Xu, “Dynamic stability and failure probability analysis of dome structures under stochastic seismic excitation,” Int. J. Struct. Stab. Dyn., vol. 14, no. 5, p. 1440001, 2014, doi: 10.1142/S021945541440001X.
  • [17] J.K. Kelly, Earthquake Resistant Design with Rubber. Springer-Verlag, London, 1993.
  • [18] F. Naeim and J.M. Kelly, Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons Inc., 1999.
  • [19] L.A. Aghalovyan, A.V. Sahakyan, and M.L. Aghalovyan, “Analysis of layered bases-foundations models under seismic actions,” Smart. Struct. Syst., vol. 2, no. 4, pp. 295–304, 2006, doi: 10.12989/sss.2006.2.4.295.
  • [20] A. Martelli and M. Forni, “Seismic isolation of civil buildings in Europe,” Prog. Struct. Eng. Mater., vol. 1, no. 3, pp. 286–294, 2005.
  • [21] M.G. Melkumyan, “Seismic isolation experience accumulated in Armenia,” in Proc. of 14th World Conference on Earthquake Engineering, China, 2008.
  • [22] E. Alavi and M. Alidoost, “Soil-structure interaction effects on seismic behavior of base-isolated buildings,” in Proc. of 15th World Conference on Earthquake Engineering, Portugal, 2012.
  • [23] “Uniform Building Code, 1997,” International Conference of Building Officials, Whittier, California, USA, 1997.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d55900-07c3-4f22-8402-04dac6836c5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.