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Abstract: The paper presents a novel approach for the analysis of steady-state heat conduction of solids containing perfectly conductive 
thread-like inhomogeneities. Modelling of a thread-like heat conductive inhomogeneity is reduced to determination of density of heat dis-
tributed along a spatial curve, which replaces the inclusion. Corresponding boundary integral equations are obtained for anisotropic solids 
with thread-like inclusions. Non-integral terms are computed in a closed form. It is shown that, nevertheless the singularity of the equation 
is 1/r, it is hypersingular, since the kernel is symmetric. Boundary element approach is adopted for solution of the obtained equations. Nu-
merical example is presented for a rectilinear conductive thread, which verifies derived boundary integral equations.  
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1. INTRODUCTION 

Thermomechanical problems for inhomogeneities in structural 
materials have been widely studied in modern scientific literature, 
since they are closely related to the analysis of effective proper-
ties, strength and fracture of composite materials. Berger et al. 
(2005) presented an analytic fundamental solution for steady-state 
heat conduction in functionally graded anisotropic medium. Wang 
et al. (2005) developed a meshless method for the analysis of 
steady-state heat conduction in anisotropic and inhomogeneous 
solids. Vales et al. (2016) presented a homogenisation technique 
for the estimation of effective thermal properties of composite 
materials and used it for the analysis of experimental data from 
thermographic measurements. Khan et al. (2016) presented an 
analytic approach for determination of effective thermal properties 
of composites with highly conductive inclusions. Kushch et al. 
(2017) derived an analytic approach for determination of effective 
heat conduction properties of composite materials with ellipsoidal 
inclusions. 

In general, thermomechanical problems for inhomogeneities 
can be divided into three main classes with respect to their geo-
metric shape, which determine the approaches used in their anal-
ysis. These are: a) bulky inhomogeneities, in which the dimen-
sions in different directions are comparable; b) thin inhomogenei-
ties (ribbons, shells), in which one dimension is much less than 
two others and c) thread-like inhomogeneities (wires), in which 
one dimension is much greater than two others. 

The class of bulky inhomogeneities includes globular defects 
of structural elements or globular filament of composite materials, 
which is rarely used at present. Such inclusions are mainly stud-
ied within the general approaches of thermomechanics. Analytic 
solutions for anisotropic solids with ellipsoidal inclusions are pre-
sented by Kushch et al. (2017). Chao et al. (2009) derived an 
exact solution for heat conduction in three-phase composite mate-
rials with elliptical inhomogeneities. Cepite and Jakovics (2008) 

presented a finite element analysis of heat conduction in inhomo-
geneous medium with elliptical pores. Lee et al. (2018) obtained 
an analytic solution for effective thermal properties for a medium 
containing spherical inclusions with imperfect interface. 

Thin ribbon-like, plate-like and wire-like filaments are widely 
used in modern composite materials, including nano-composites. 
It should be mentioned that modern carbon nano-filament, for 
example, graphene, possesses very high thermal conductivity 
(Balandin et al., 2010), which should be definitely accounted for in 
the numerical thermomechanical analysis of carbon nano-
composites. However, the study of thin-walled and thread-like 
inclusions is complicated due to the low accuracy of general 
numerical approaches (e.g. finite element and boundary element 
methods) in modelling of thin shapes. Therefore, thin and thread-
like inclusions are studied with special approaches (e.g. see Sulim 
and Piskozub, 2008), which can reduce the number of degrees of 
freedom accounting for the 2D or 1D geometries of such inhomo-
geneities.  

Thin ribbon-like and shell-like inclusions can be studied with 
the help of discontinuity (jump) function method, which replaces 
the inhomogeneity with a surface of field discontinuity (see Pas-
ternak et al., 2019). However, this approach cannot be directly 
applied to the study of thread-like inclusions. To the best of au-
thors’ knowledge, there are no publications which provide some 
special approaches for thermomechanical analysis of thread-like 
inhomogeneities. There are only some publications which provide 
analytic and experimental study of nano-wires based on the ap-
proaches of theoretical physics (Anufriev and Nomura, 2019; Im et 
al., 2013). 

Therefore, this study provides a straightforward boundary in-
tegral equation approach and the boundary element numerical 
solution strategy for the analysis of steady-state heat conduction 
in anisotropic medium containing a perfectly conductive thread-
like inclusion. It is the first step in the thermomechanical analysis 
of materials containing thread-like inhomogeneities. 
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2. BOUNDARY INTEGRAL EQUATIONS OF HEAT  
CONDUCTION OF ANISOTROPIC MEDIUM  
CONTAINING A THREAD-LIKE INCLUSION 

Consider an anisotropic medium containing a perfectly con-

ductive thread-like inclusion of constant radius 𝜌, in which the 

median line 𝐿 is a smooth curve (see Fig. 1). 

 
Fig. 1. Thread-like inclusion 

Green’s third identity for anisotropic heat conduction in a solid 
with such inclusion is written as (Pasternak et al., 2017) 

𝜃(𝐲) = ∬(Θ(𝐱′, 𝐲)ℎn(𝐱′) − 𝐻(𝐱′, 𝐲)𝜃(𝐱′))d𝑆(𝐱′) 

𝑆

 

                 +𝜃∞(𝐲), (1) 

where 𝜃 is temperature, ℎn is a heat flux normal to the surface 𝑆 
of the inclusion and 𝜃∞(𝐲) is a temperature field due to thermal 
loading at infinity. Kernels of integral Eq. (1) are defined as (Pas-
ternak et al., 2017) 

Θ(𝐱, 𝐲) = −
1

8π2|𝐱−𝐲|
∮ (𝑘𝑖𝑗𝜆𝑖𝜆𝑗)

−1
d𝑙(𝛌)

|𝛌|=1

, (2) 

𝐻(𝐱, 𝐲) = −𝑘𝑖𝑗𝑛𝑖(𝐱)Θ,𝑗(𝐱, 𝐲), (3) 

where 𝑘𝑖𝑗  are heat conduction coefficients, 𝑛𝑖(𝐱) is a unit normal 

to the inclusion surface at the point 𝐱 and 𝛌 is a unit vector normal 
to the position vector 𝐱 − 𝐲. 

When 𝜌 is small compared to a characteristic length 𝐿 of the 
thread, one can assume that according to Eq. (2) 

Θ(𝐱′, 𝐲) ≈ Θ(𝐱, 𝐲) (4) 

and according to Eq. (3) 

∫ 𝐻(𝐱′, 𝐲)d𝜗(𝐱′)
2π

0
= 0, (5) 

where 𝜗 is the polar angle in the normal cross-section of the 

inclusion at the point 𝐱. 
Since the inclusion is assumed perfectly heat conducting, its 

temperature 𝜃(𝐱) is a constant, and thus, for small 𝜌 accounting 
for Eqs (4) and (5), one can rewrite Eq. (1) as 

𝜃(𝐲) = ∫ Θ(𝐱, 𝐲)γ(𝐱)d𝐿(𝐱)
𝐿

+ 𝜃∞(𝐲), (6) 

where 

γ(𝐱) = ρ ∫ ℎn(𝐱′)d𝜗(𝐱′)
2π

0
 (7) 

is the sought heat distributed along the inclusion line. 

The unknown function γ(𝐱) can be determined by solving the 
integral equation obtained from Eq. (6) by approaching an internal 

point 𝐲 of a medium to some point 𝐱0 of the thread-like inclusion: 

𝜃0 = limy→𝐱0
∫ Θ(𝐱, 𝐲)γ(𝐱)d𝐿(𝐱)

𝐿
+ 𝜃∞(𝐱0), (8) 

where 𝜃0 is the constant temperature of the inclusion, since it is 
assumed perfectly conductive. 

Eq. (8) should be accompanied with the inclusion balance 
equation 

∫ γ(𝐱)d𝐿(𝐱)
𝐿

+ 𝐻0 = 0, (9) 

where 𝐻0 is the external heat applied to the inclusion. 

It should be noted that, nevertheless the kernel Θ(𝐱, 𝐲) has 
singularity 1/𝑟, the integral Eq. (8) is hypersingular and cannot be 
considered as a Cauchy type, since the kernel is symmetric, that 

is, Θ(𝐱, 𝐲) = Θ(𝐲, 𝐱). Therefore, consider this equation in detail. 
Assume that the line 𝐿, which models a thread, is a smooth 

spatial curve. Introducing an opened contour 𝐿𝜀  of small radius 

𝜀 → +0 surrounding the collocation point 𝐱0 (see Fig. 2), Eq. (8) 
is rewritten as 

∫ Θ(𝐱, 𝐱0)γ(𝐱)d𝐿(𝐱)
𝐿\𝐿𝜀

+ 𝐵(𝐱0)γ(𝐱0) = 𝜃0 − 𝜃∞(𝐱0),

 (10) 

where 

𝐵(𝐱0) = ∫ Θ(𝐱, 𝐱0)d𝐿(𝐱)
𝐿𝜀

. (11) 

 
Fig. 2. Determination of the non-integral terms 

Substituting Eq. (2) into Eq. (11), one obtains 

𝐵(𝐱0) = −
1

8π2 ∫ ∮ (𝑘𝑖𝑗𝜆𝑖𝜆𝑗)
−1

d𝑙(𝛌)
|𝛌|=1

dϑ

π

0

,  (12) 

where 𝛌(ψ) ⊥ −(cosϑ𝛕 + sinϑ𝐧). Since according to Eq. (2) 

the integrand of Eq. (12) is a 𝜋-periodic function of ϑ and ψ, the 

non-integral term 𝐵(𝐱0) depends only on the tangent vector 𝛕 to 

the line 𝐿 at the point 𝐱0. 
For isotropic materials, Eq. (12) reduces to 

𝐵(𝐱0) = −
1

4𝑘
 (13) 

and is independent of the spatial orientation of the inclusion line. 

Here, 𝑘 is a heat conduction coefficient of an isotropic material. 
It should be emphasised that, nevertheless the strength of 

singularity in Eq. (10) according to Eq. (2) is 1 r⁄ , the integral in 
Eq. (10) cannot be computed as the Cauchy principal value. 
Cauchy principal value can be computed for an integral of a type 

CPV ∫
f(x)

x−x0
dx

b

a

=

∫
f(x)

x−x0
dx

x0−ε

a

+ ∫
f(x)

x−x0
dx

b

x0+ε

                (a < x0 < 𝑏), (14) 
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but Eq. (10) contains integral of the type 

∫
f(x)

|x−x0|
dx

x0−ε

a

+ ∫
f(x)

|x−x0|
dx

b

x0+ε

  (a < x0 < 𝑏), (15) 

which diverges when ε tends to zero. Therefore, boundary integral 
equation (11) is hypersingular, and for its solution, the integral in it 
should be computed as the Hadamard Finite Part. 

3. COMPARISON WITH THE 2D SOLUTION FOR A HEAT 
CONDUCTIVE LINE INCLUSION 

The studies on 2D heat conductive line inclusions are widely 
covered in scientific literature (e.g. see Sulim and Piskozub, 
2008). However, in 2D heat conduction, line inhomogeneity is not 
exactly a line in 3D representation. Since a cylindrical (plane heat 
conduction and plane strain) or a plate-like (generalised heat 
conduction in a plate with thermally insulated surfaces, plane 
stress) solid is considered in 2D heat conduction and thermoelas-
ticity, for which the geometry and loading do not change along the 
generatrix (generally Ox3 axis), a 2D rigid line is, in general, a 
cylindrical surface, for which intersection (a 2D line) with a front 
plane is considered. 

Boundary integral equations for a 2D heat conducting line are 
obtained as (e.g. see Sulim and Piskozub, 2008) 

∫ Θ2D(𝐱, 𝐱0)Σhn(𝐱)d𝐿(𝐱)
𝐿

= 𝜃0 − 𝜃∞(𝐱0), (16) 

accompanied with the heat balance equation 

∫ Σhn(𝐱)d𝐿(𝐱)
𝐿

+ 𝐻0 = 0, (17) 

where Σhn(𝐱) is the heat flux discontinuity at transition through 
the 2D inclusion line. 

The 2D kernel Θ2D(𝐱, 𝐱0) of the integral Eq. (16) possesses 
logarithmic singularity. 

Comparing the boundary integral equations (9) and (10) for a 
heat conducting thread-like inclusion and Eqs (16) and (17) for a 
2D heat conductive line, one can observe the following. 

 Order of singularity. According to Eq. (16), boundary integral 
equations for 2D heat conductive line inclusions are weakly 
singular (with logarithmic singularity). After differentiation of 

Eq. (16) with respect to 𝐱0, one can obtain a singular integral 

equation with Cauchy principal value integral, which is well 
studied. In contrast, boundary integral equation (10) for a 3D 
heat conductive thread is hypersingular with symmetric kernel 

of the order 1 𝑟⁄ . The authors have found only one source 
(Eq. (54) on p. 316 of Polyanin and Manzhirov (2008)), refer-
ring the integral equation with a similar kernel. 

 Type of equation. It is readily seen that the integral Eq. (10) 
of a heat conductive thread-like inclusion is a Fredholm equa-
tion of the second kind and the integral Eq. (16) of the 2D heat 
conducting line inclusion is a Fredholm equation of the first 
kind. Both equations are inhomogeneous. 

 Heat flux singularity at inclusion tip. It is well known that 
the heat flux exhibits the square root singularity at the two tips 
of the 2D heat conducting line inclusion (Sulim and Piskozub, 
2008). The same concerns the sought solution Σhn(𝐱) of Eq. 

(16). Heat flux discontinuity Σhn(𝐱) at 2D inclusion line pos-
sesses square root singularity at its endpoints. The same con-
cerns the stress field at the 2D inclusion in thermoelastic prob-
lems. Nevertheless, the studies by Mirenkova and Sosnina 

(1982) revealed that the stress field near the tips of a rigid 
needle inclusion possesses another type of singularity. The 
stresses at the tip of an ellipsoidal needle are of order 

𝑂(1 (𝛼2|ln 𝛼|)⁄ , where 𝛼 ≪ 1 defines the curvature of the 
inclusion at its tips. According to the theory of asymptotic ex-
pansions, the same singularity is observed in the stress field 
in the vicinity of inclusion tips. Also, the same field behaviour 
is observed in the analysis of flows near thin axisymmetric 
cavities (see Petrov, 1986). 
This comparison reveals that thread-like inclusions should be 

attributed to a separate class of inhomogeneities, which stands 
alone from bulky inclusions and shell-like (or 2D line) inclusions. 
Special mathematical attention should be paid to the development 
of analytic and numerical approaches of the solution of boundary 
integral equation (10), which discover and account for the singu-
larity of the sought function at the endpoints of inclusion line. 

4. RECTILINEAR THREAD-LIKE INCLUSION  
IN ISOTROPIC MEDIUM 

Consider a rectilinear thread-like, heat conductive inclusion of 
length 2𝑎 in an isotropic medium, which is placed at the section 

– 𝑎 < 𝑥1 < 𝑎 of 𝑂𝑥1 axis. The heat ℎ0 is flowing uniformly 

along 𝑂𝑥1 axis. In this case, Eqs (9), (10) and (13) reduce to 

1

π
HFP ∫

γ(𝑥1)

|𝑥1−𝑥1
(0)

|
d𝑥1

𝑎

−𝑎

+ γ(𝑥1
(0)

) = −4ℎ0𝑥1
(0)

. (18) 

Here, HFP stands for the Hadamard Finite Part of the integral. 
Boundary integral equation (18) can be solved numerically 

with the following boundary element approach. The interval 

(– a, a) is divided into N equal parts (boundary elements). It is 

assumed that the function γ(𝑥1) is constant on each element 

(γ(𝑗)). Collocation points x1
(j)

= a(−1 + (2j − 1) N⁄ ) are 

placed at the centre of each boundary element. Thus, the integral 
equation (18) is reduced to the following system of linear algebraic 
equations: 

1

π
∑ aijγ

(j)N
j=1 = −4h0x1

(i)
, (19) 

where 

aij = {

π,                i = j

log |
tij+1

tij−1
| , i ≠ j,

 (20) 

and tij = (x1
(i)

− x1
(j)

)(N a⁄ ). Here, i = 1, … , N and j =

1, … , N. 
One thousand constant boundary elements of equal length 

are used to mesh the line of the thread-like inclusion. Numerical 

results for the sought function γ(𝑥1) are presented in Fig. 3. 

Normalised temperature field 𝜃𝑘 (ℎ0𝑎)⁄  near the tread-like 
inclusion is presented in Fig. 4 (here, 𝑘 is the heat conduction 
coefficient). The field is calculated based on Eq. (2). 

One can see in Fig. 4 that the temperature is zero on the in-
clusion line. Isothermal lines “envelop” the inclusion. Field distribu-
tion is very close to the thread. Large field gradient is observed at 
inclusion tips. 

Obtained temperature field was compared with the results of 
finite element analysis. Perfect agreement was observed, which 
verifies the proposed approach. 
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Fig. 3. Distribution of sought heat along the inclusion line 

 
Fig. 4. Dimensionless temperature field near the thread-like inclusion 

5. CONCLUSION 

The study presents a novel approach to the analysis of 
thread-like inclusions. Boundary integral equations of the problem 
are obtained and it is shown that, nevertheless the kernel pos-

sesses 1/𝑟 singularity, this equation is hypersingular. 
Numerical solution is presented for a rectilinear thread-like 

conductive inclusion. Big field gradients are observed near the 
inclusion line, especially at its tips. Therefore, special studies 
should be provided on the analysis of singularity of the solution of 
the obtained hypersingular boundary integral equations. 
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