PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Layer thickness measurement of technically anodised aluminium surfaces by using goniometric scattered light

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, scattered light measurement technology has developed into a common method for measuring roughness, form and waviness on precision machined surfaces. Meanwhile, the application for the material structure evaluation of electrolytically anodized surfaces has also been considered. In this context, we present a novel approach to layer thickness measurement of naturally anodised aluminium surfaces. Our approach is based on the reflection intensity of the light beam, which penetrates the oxide layer and is reflected back from the surface as well as from the layer base. In the approach, a model for estimating reflection intensity I from the absorption coefficient is employed. The methodology is tested by comparing results to a layer thickness evaluation using metallographic preparation. Based on the proposed approach, we are able to measure intervals of layer thicknesses on naturally anodized aluminium surfaces without contact.
Słowa kluczowe
Rocznik
Strony
371--382
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Universität Siegen, Fakultät IV, Lehrstuhl für Fertigungsautomatisierung und Montage, PROTECH-Institut für Produktionstechnik, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
autor
  • Universität Siegen, Fakultät IV, Lehrstuhl für Fertigungsautomatisierung und Montage, PROTECH-Institut für Produktionstechnik, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
Bibliografia
  • [1] ASTM International. (2015). Standard Test Methods for Determining Average Grain Size (ASTM E112 - 13). https://doi.org/10.1520/E0112-13
  • [2] Brodmann, R., & Allgauer, M. (1989). Comparison of light scattering from rough surfaces with optical and mechanical profilometry. Proceedings of the International Congress on Optical Science and Engineering, France, 1009, 111-118. https://doi.org/10.1117/12.949161
  • [3] OptoSurf Gmbh. (2014). Datas Sheet OS 500-32.
  • [4] Brodmann, R., & Thurn, G. (1986). Roughness measurement of ground, turned and shot-peened surfaces by the light scattering method. Wear, 109(1-4), 1-13. https://doi.org/10.1016/0043-1648(86)90247-4
  • [5] Cheng, W. (2017). Thickness measurement of metal plates using swept-frequency eddy current testing and impedance normalization. IEEE Sensors Journal, 17(14), 4558-4569. https://doi.org/10.1109/JSEN.2017.2710356
  • [6] Choi, G., Kim, M., Kim, J., & Pahk, H. J. (2020). Angle-resolved spectral reflectometry with a digital light processing projector. Optics Express, 28(18), 26908-26921. https://doi.org/10.1364/OE.405204
  • [7] Duffy, A. (2018). A pictorial approach to Lenz’s law. The Physics Teacher, 56(4), 224-225. https://doi.org/10.1119/1.5028236
  • [8] Geisler, T., & Kolb, A. (2018). Pattern recognition of rough surfaces by using goniometric scattered light. Metrology and Measurement Systems, 25(1), 33-46. https://doi.org/10.24425/118160
  • [9] Gilbert, O., Deumié, C., & Amra, C. (2005). Angle-resolved ellipsometry of scattering patterns from arbitrary surfaces and bulks. Optics Express, 13(6), 2403-2418. https://doi.org/10.1364/OPEX.13.002403
  • [10] Hagemann, H. J., Gudat, W., & Kunz, C. (1975). Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al 2 O 3. Journal of the Optical Society of America, 65(5), 742-44. https://doi.org/10.1364/JOSA.65.000742
  • [11] Hauptmann, P., Hoppe, N., & Püttmer, A. (2002). Application of ultrasonic sensors in the process industry. Measurement Science and Technology, 13(8), 73-83. https://doi.org/10.1088/0957-0233/13/8/201
  • [12] Lane, J. (1992). Aluminium in Building. Routledge. https://doi.org/10.4324/9780429463372
  • [13] Aslan, M. M., Webster, N. A., Byard, C. L., Pereira, M. B., Hayes, C. M., Wiederkehr, R. S., & Mendes, S. B. (2010). Low-loss optical waveguides for the near ultra-violet and visible spectra regions with Al2O3 thin films from atomic layer deposition. Thin Solid Films, 518(17), 4935-4940. https://doi.org/10.1016/j.tsf.2010.03.011
  • [14] Nicholson, R. B., Thomas, G., & Nutting, J. (1958). A technique for obtaining thin foils of aluminium and aluminium alloys for transmission electron metallography. British Journal of Applied Physics, 9(1), 25. https://doi.org/10.1088/0508-3443/9/1/305
  • [15] Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., & Gösele, U. (2002). Self-ordering regimes of porous alumina: the 10 porosity rule. Nano letters, 2(6), 677-680. https://doi.org/10.1021/nl025537k
  • [16] Deutscher Verband der Automobilindustrie. (2009). Geometrische Produktspezifikation Oberflächenbeschaffenheit Winkelaufgelöste Streulichtmesstechnik Definition, Kenngrößen und Anwendung (Norm VDA 2009 2010-07-00).
  • [17] Parkhutik, V. P., & Shershulsky, V. I. (1992). Theoretical modelling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25(8), 1258. https://doi.org/10.1088/0022-3727/25/8/017
  • [18] Querry, M. R. (1985). Optical constants. University of Missouri - Kansas City.
  • [19] Revenko, G. (2000). X-RAY Fluorescence Analysis: State of the Art and Trends of Development. Industrial Laboratory. Diagnostics of Materials, 66(10), 637-652.
  • [20] Schröder, S., Herffurth, T., Blaschke, H., & Duparré, A. (2011). Angle-resolved scattering: an effective method for characterizing thin-film coatings. Applied Optics, 50(9), C164-C171. https://doi.org/10.1364/AO.50.00C164
  • [21] Seewig, J., Beichert, G., Brodmann, R., Bodschwinna, H., & Wendel, M. (2009). Extraction of shape and roughness using scattering light. SPIE Europe Optical Metrology, Optical Measurement Systems for Industrial Inspection VI, 7389, 73890N. https://doi.org/10.1117/12.827478
  • [22] Swanepoel, R. (1983). Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, 16(12), 1214-1218. https://doi.org/10.1088/0022-3735/16/12/023
  • [23] Sweeney, K., & Grunewald, U. (2003). The application of roll forming for automotive structural parts. Journal of Materials Processing Technology, 132(1-3), 9-15.
  • [24] Wolter H. (1956) Optik dünner Schichten. In Bergstrand, E., Maréchal, A., Françon, M., & Wolter, H. (Eds.) Grundlagen der Optik/Fundamentals of Optics (pp. 461-554), Springer Verlag. https://doi.org/10.1007/978-3-642-45850-7_4
  • [25] Zhang, Y., & Yan, G. (2007). Detection of gas pipe wall thickness based on electromagnetic flux leakage. Russian Journal of Nondestructive Testing, 43(2), 123-132. https://doi.org/10.1134/S1061830907020088
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d3639c-7e47-4ae2-94e3-fdb542027a2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.