PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Metoda szacowania natężenia prądu korozyjnego na podstawie ugięcia elementów żelbetowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Method of estimation of corrosion current based on deflection of reinforced concrete elements
Języki publikacji
PL
Abstrakty
PL
W pracy podjęto problematykę ugięcia elementów żelbetowych, podlegających wpływom korozji zbrojenia. Praca ma charakter w pełni teoretyczny. Skupiono się na wyprowadzeniu zależności, wiążącej gęstość natężenia prądu korozyjnego z krzywizną ugięcia. W zamyśle przedstawionej metody jest to nowy element, umożliwiający wstępne oszacowanie gęstości prądu korozyjnego w oparciu o bezinwazyjne pomiary ugięć konstrukcji.
EN
The study takes into account the problem of deflection of reinforced concrete elements subject to the influence of reinforcement corrosion. The work is fully theoretical. The focus was on deriving the dependence linking the corrosion current density with the deflection curvature. In the concept of the presented method, it is a new element that enables preliminary estimation of the corrosion current density based on non-invasive measurements of structure deflections.
Rocznik
Tom
Strony
57--64
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Wyższa Szkoła Techniczna w Katowicach; Wydział Architektury, Budownictwa i Sztuk Stosowanych; ul. Rolna 43, 42-555 Katowic
Bibliografia
  • [1] Krykowski, T., Jaśniok, T., Recha, F., Karolak, M.: A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including. W: Materials, vol. 13, no. 23, pp. 1–17, 2020, .
  • [2] Michel, A., Pease, B.J., Peterová, A., Geiker, M.R., Stang, H., Thybo, A.E.A.:, Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations. W: Cement and Concrete Composites, vol. 47pp. 75–86, Mar. 2014, doi: 10.1016/j.cemconcomp.2013.04.011.
  • [3] Suwito, C., Xi, Y.: The effect of chloride-induced steel corrosion on service life of reinforced concrete structures. W: Structure and Infrastructure Engineering, vol. 4, no. 3, pp. 177–192, 2008, doi: 10.1080/15732470600688699.
  • [4] Maaddawy, T. El, Soudki, K.: A model for prediction of time from corrosion initiation to corrosion cracking. W: Cement and Concrete Composites, vol. 29, no. 3, pp. 168–175, 2007, doi: 10.1016/j.cemconcomp.2006.11.004.
  • [5] Almusallam, A.A.: Effect of degree of corrosion on the properties of reinforcing steel bars. W: Construction and Building Materials, vol. 15, no. 8, pp. 361–368, 2001, doi: 10.1016/S0950-0618(01)00009-5.
  • [6] Apostolopoulos, C.A., Papadopoulos, M.P., Pantelakis, S.G.: Tensile behavior of corroded reinforcing steel bars BSt 500s. W: Construction and Building Materials, vol. 20, no. 9, pp. 782–789, 2006, doi: 10.1016/j.conbuildmat.2005.01.065.
  • [7] Fischer, C.: Auswirkungen der Bewehrungskorrosion auf den Verbund zwischen Stahl und Beton. Stuttgart, Germany: Institut für Werkstoffe im Bauwesen der Universität Stuttgart, 2012.
  • [8] Capozucca, R.: Damage to reinforced concrete due to reinforcement corrosion. W: Construction and Building Materials, vol. 9, no. 5, pp. 295–303, 1995, .
  • [9] German, M., Pamin, J.: FEM simulations of cracking in RC beams due to corrosion progress. W: Archives of Civil and Mechanical Engineering, vol. 15, no. 4, pp. 1160–1172, 2015, doi: 10.1016/j.acme.2014.12.010.
  • [10] Alami, E. El, Fekak, F., Garibaldi, L., Moustabchir, H., Elkhalfi, A., Scutaru, M.L., Vlase, S.: Numerical Study of the Bond Strength Evolution of Corroded Reinforcement in Concrete in Pull-Out Tests. W: Applied Sciences (Switzerland), vol. 12, no. 654, 2022, .
  • [11] Altoubat, S., Maalej, M., Shaikh, F.U.A.: Laboratory Simulation of Corrosion Damage in Reinforced Concrete.W: International Journal of Concrete Structures and Materials, vol. 10, no. 3, pp. 383–391, 2016, doi: 10.1007/s40069-016-0138-7.
  • [12] Sæther, I., Sand, B.: FEM simulations of reinforced concrete beams attacked by corrosion. W: Nordic Concrete Research, vol. 39, pp. 15–32, 2009, .
  • [13] Castel, A., Franfois, R., Arliguie, G.: Mechanical behaviour of corroded reinforced concrete beams - Part 1 : Experimental study of corroded beams., vol. 33, no. November, pp. 539–544, 2000.
  • [14] Recha, F., Krykowski, T Jaśniok, T.: Numeryczna symulacja spadku nośności konstrukcji żelbetowej w wyniku korozji zbrojenia. 15th International Conference on New Trends in Statics and Dynamics of Buildings, Bratislava, Slovakia, October 19-20, 2017.
  • [15] Shen, J., Gao, X., Li, B., Du, K., Jin, R., Chen, W., Xu, Y.: Damage evolution of RC beams under simultaneous reinforcement corrosion and sustained load. W: Materials, vol. 12, no. 4, pp. 1–16, 2019, doi: 10.3390/ma12040627.
  • [16] Wang, Z., Jin, W., Dong, Y., Frangopol, D.M.: Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives.W: Engineering Structures, vol. 157pp. 119–131, Feb. 2018, doi: 10.1016/j.engstruct.2017.11.022.
  • [17] Li, L., Mahmoodian, M., Khaloo, A., Sun, Z.: Risk-Cost Optimized Maintenance Strategy for Steel Bridge Subjected to Deterioration. W: Sustainability, vol. 14, no. 436, pp. 1-16, 2022, doi: 10.3390/su14010436
  • [18] Recha, F., Nagel, P.: Principles of conducting periodic technical tests of building objects in the field in safety and use. W: Builder, vol. 295, no. 2, pp. 12–14, 2022, doi: 10.5604/01.3001.0015.6949.
  • [19] Van Steen, C., Verstrynge, E.: Degradation monitoring in reinforced concrete with 3D localization of rebar corrosion and related concrete cracking. W: Applied Sciences (Switzerland), vol. 11, no. 15, 2021, doi: 10.3390/app11156772.
  • [20] Raczkiewicz, W., Wójcicki, A.: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method.W: Applied Sciences (Switzerland), vol. 10, no. 3, pp. 13–15, 2020, doi: 10.3390/app10031089.
  • [21] Zybura, A., Jaśniok, M., Jaśniok, T.: Diagnostyka konstrukcji żelbetowych. Badania korozji zbrojenia i właściwości ochronnych betonu, t.2. Wydawnictwo Naukowe PWN, Warszawa, 2011.
  • [22] Negrutiu, C., Sosa, I.P., Constantinescu, H., Heghes, B.: Crack Analysis of Reinforced High Strength Concrete Elements in Simulated Aggressive Environments. W: Procedia Technology, vol. 22, no. October 2014, pp. 4–12, 2016, doi: 10.1016/j.protcy.2016.01.002.
  • [23] Recha, F.: Modeling the degradation of reinforced concrete elements as a result of reinforcement corrosion. PD Thesis. Gliwice, Poland, 2021.
  • [24] Grandić, D., Bjegović, D., Grandić, I.Š.: Deflection of reinforced concrete beams simultaneously subjected to sustained load and reinforcement corrosion. W: Structural Engineers World Congress, no. 4, 2011.25] Wanyou, Z., Ruiyuan, Z., Lijuan, X.: Corrosion of reinforced concrete in accelerated tests. W: Advanced Materials Research, vol. 610–613, no. 3, pp. 485–489, 2013, doi: 10.4028/www.scientific.net/AMR.610-613.485.
  • [26] Loukil, O., Adelaide, L., Bouteiller, V., Quiertant, M., Ragueneau, F., Bourbon, X., Trenty: Experimental study of corrosion-induced degradation of reinforced concrete elements., International RILEM Conference on Materials, Systems and Structures in Civil Engineering Conference segment on Service life of cement-Based Materials and Structures 22-24 August 2016, Technical University of Denmark, Lyngby, Denmark.
  • [27] Bhalgamiya, S., Tivadi, G., Jethva, M.: Techniques for Accelerated Corrosion Test of Steel Concrete for Determine Durability. W: International Research Journal of Engineering and Technology, vol. 5, no. 4, pp. 4399–4402, 2018.
  • [28] Deb, S.: Accelerated Short-Term Techniques to Evaluate Corrosion in Reinforced Concrete Structures .W: The Masterbuilder, no. July , pp. 248–255, 2012, .
  • [29] Arredondo-Rea, S.P., Corral-Higuera, R., Gómez-Soberón, J. M., Gámez-García, D. C., Bernal-Camacho, J. M., Rosas-Casarez, C. A., Ungsson-Nieblas, M. J.: Durability parameters of reinforced recycled aggregate concrete: Case study.W: Applied Sciences (Switzerland), vol. 9, no. 4, 2019, doi: 10.3390/app9040617.
  • [30] Vidal, T., Castel, A., François, R.: Analyzing crack width to predict corrosion in reinforced concrete.W: Cement and Concrete Research, vol. 34, no. 1, pp. 165–174, 2004, doi: 10.1016/S0008-8846(03)00246-1.
  • [31] Polish Committee of Normalization:, Norm PN-EN 1992-1-1 Eurocode 2: Design of concrete structures. Part 1-1: General rules and regulations for buildings; Warsaw, 2008.
  • [32] Chen, J., Zhang, W., Tang, Z., Huang, Q.: Experimental and numerical investigation of chloride-induced reinforcement corrosion and mortar cover cracking.W: Cement and Concrete Composites, vol. 1112020, doi: 10.1016/j.cemconcomp.2020.103620.
  • [33] Fiertak, M., Kańka, S.: Właściwości mechaniczne skorodowanej stali zbrojeniowej w betonie trzonu komina przemysłowego. W: Przegląd Budowlany, vol. 83, no. 6, pp. 27–29, 2012, .
  • [34] Liu, Y.: Modeling the time to corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures. Blacksburg, Virginia, USA, 1996.
  • [35] Balafas, I., Burgoyne, C.J.: Environmental effects on cover cracking due to corrosion. W: Cement and Concrete Research, vol. 40, no. 9, pp. 1429–1440, 2010, doi: 10.1016/j.cemconres.2010.05.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64d28138-51ac-422b-8d31-084f9e85e7f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.