PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultimate shear response of ultra-high-performance steel fibre-reinforced concrete elements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the experimental performance of ultra-high-performance steel fibre-reinforced concrete (UHPSFRC) beams subjected to loads at relatively low shear span-to-depth ratios. The results and observations from six tests provide a detailed insight into the ultimate response including shear strength and failure mode of structural elements incorporating various fibre contents. The test results showed that a higher fibre content results in an increase in ultimate capacity and some enhancement in terms of ductility. Detailed nonlinear numerical validations and sensitivity studies were also undertaken in order to obtain further insights into the response of UHPSFRC beams, with particular focus on the influence of the shear span-to-depth ratio, fibre content and flexural reinforcement ratio. The parametric investigations showed that a reduction in shear span-to-depth ratio results in an increase in the member capacity, whilst a reduction in the flexural reinforcement ratio produces a lower ultimate capacity and a relatively more flexible response. The test results combined with those from numerical simulations enabled the development of a series of design expressions to estimate the shear strength of such members. Validations were performed against the results in this paper, as well as against a collated database from previous experimental studies.
Rocznik
Strony
280--295
Opis fizyczny
Bibliogr. 64 poz., rys., wykr.
Twórcy
autor
  • StruSoft AB, Malmö, Sweden
autor
  • Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
Bibliografia
  • [1] Sobuz HR, Visintin P, Ali MM, Singh M, Griffith MC, Sheikh AH. Manufacturing ultra-high performance concrete utilising conventional materials and production methods. Constr Build Mater. 2016;111:251–61. https ://doi.org/10.1016/j.conbu iloma t.2016.02.102.
  • [2] Randl N, Steiner T, Ofner S, Baumgartner E, Mészöly T. Development of UHPC mixtures from an ecological point of view. Constr Build Mater. 2014;67:373–378.5. https ://doi.org/10.1016/j.conbuildma t.2013.12.102.
  • [3] Han B, Dong S, Ou J, Zhang C, Wang Y, Yu X, Ding S. Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete. Mater Des. 2016;96:16–26. https ://doi.org/10.1016/j.matde s.2016.02.004.
  • [4] Groli G, Pérez Caldentey A, Soto AG. Cracking performance of SCC reinforced with recycled fibres-an experimental study. Struct Concr. 2014;15(2):136–53. https ://doi.org/10.1002/suco.20130 0008.
  • [5] Minelli F, Plizzari GA. On the effectiveness of steel fibers as shear reinforcement. ACI Struct J. 2013;110(3):379–89.
  • [6] Magureanu C, Sosa I, Negrutiu C, Heghes B. Mechanical properties and durability of ultra-high-performance concrete. ACI Mater J. 2012;109(2):177.
  • [7] Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Constr Build Mater. 2009;23(6):2291–8. https ://doi.org/10.1016/j.conbu ildma t.2008.11.012.
  • [8] Dugat J, Roux N, Bernier G. Mechanical properties of reactive powder concretes. Mater Struct. 1996;29(4):233–40. https ://doi.org/10.1007/bf024 85945 .
  • [9] Ma J, Schneider H. Properties of ultra-high-performance concrete. Leipzig Ann Civ Eng Rep (LACER). 2002;7:25–32.
  • [10] Yu R, Spiesz PHJH, Brouwers HJH. Development of an ecofriendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. Cem Concr Compos. 2015;55:383–94. https ://doi.org/10.1016/j.cemco ncomp.2014.09.024.
  • [11] Hassan AMT, Jones SW, Mahmud GH. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Constr Build Mater. 2012;37:874–82. https ://doi.org/10.1016/j.conbu ildma t.2012.04.030.
  • [12] Di Prisco M, Plizzari G, Vandewalle L. Fibre reinforced concrete: new design perspectives. Mater Struct. 2009;42(9):1261–81. https ://doi.org/10.1617/s1152 7-009-9529-4.
  • [13] Krahl PA, Gidrăo GDMS, Carrazedo R. Cyclic behavior of UHPFRC under compression. Cem Concr Compos. 2019;103:363. https ://doi.org/10.1016/j.cemco ncomp .2019.10336 3.
  • [14] Rossi P. Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites. Cem Concr Compos. 2013;37:246–8. https ://doi.org/10.1016/j.cemco ncomp .2012.08.005.
  • [15] Kwak YK, Eberhard MO, Kim WS, Kim J. Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct J. 2002;99(4):530–8.
  • [16] Bompa DV, Elghazouli AY. Ultimate shear behaviour of hybrid reinforced concrete beam-to-steel column assemblages. Eng Struct. 2015;101:318–36. https ://doi.org/10.1016/j.engstruct.2015.07.033.
  • [17] Kang THK, Kim W, Kwak YK, Hong SG. Shear testing of steel fiber-reinforced lightweight concrete beams without web reinforcement. ACI Struct J. 2011;108(5):553–61.
  • [18] Yoo DY, Yoon YS. Structural performance of ultra-highperformance concrete beams with different steel fibers. Eng Struct. 2015;102:409–23. https ://doi.org/10.1016/j.engst ruct.2015.08.029.
  • [19] Singh M, Sheikh AH, Ali MM, Visintin P, Griffith MC. Experimental and numerical study of the flexural behaviour of ultrahigh performance fibre reinforced concrete beams. Constr Build Mater. 2017;138:12–25. https ://doi.org/10.1016/j.conbu iloma t.2017.02.002.
  • [20] Chen S, Zhang R, Jia LJ, Wang JY. Flexural behaviour of rebarreinforced ultra-high-performance concrete beams. Mag Contr Res. 2018;70(19):997–1015. https ://doi.org/10.1680/jmacr.17.00283 .
  • [21] Hasgul U, Turker K, Birol T, Yavas A. Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios. Struct Concr. 2018;19(6):1577–90. https ://doi.org/10.1002/suco.20170 0089.
  • [22] Wu P, Wu C, Liu Z, Hao H. Investigation of shear performance of UHPC by direct shear tests. Eng Struct. 2019;183:780–90. https ://doi.org/10.1016/j.engst ruct.2019.01.055.
  • [23] Xia J, Mackie KR, Saleem MA, Mirmiran A. Shear failure analysis on ultra-high performance concrete beams reinforced with high strength steel. Eng Struct. 2011;33(12):3597–609. https ://doi.org/10.1016/j.engst ruct.2011.06.023.
  • [24] Qi JN, Ma ZJ, Wang JQ, Liu TX. Post-cracking shear strength and deformability of HSS-UHPFRC beams. Struct Concr. 2016;17(6):1033–46. https ://doi.org/10.1002/suco.20150 0191.
  • [25] Zagon R, Matthys S, Kiss Z. Shear behaviour of SFR-UHPC I-shaped beams. Constr Build Mater. 2016;124:258–68. https ://doi.org/10.1016/j.conbu ildma t.2016.07.075.
  • [26] Barros JA, Cunha VM, Ribeiro AF, Antunes JAB. Post-cracking behaviour of steel fibre reinforced concrete. Mater Struct. 2005;38(1):47–56. https ://doi.org/10.1007/BF024 80574 .
  • [27] Kang ST, Lee Y, Park YD, Kim JK. Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Compos Struct. 2010;92(1):61–71. https://doi.org/10.1016/j.comps truct .2009.06.012.
  • [28] Krahl PA, Carrazedo R, El Debs MK. Mechanical damage evolution in UHPFRC: experimental and numerical investigation. Eng Struct. 2018;170:63–77. https ://doi.org/10.1016/j.engstruct.2018.05.064.
  • [29] Zingaila T, Augonis M, Arruda MRT, Šerelis E, Kelpša Š. Experimental and numerical analysis of flexural concrete-UHPFRC/ RC composite members. Mechanics. 2017;23(2):182–9. https ://doi.org/10.5755/j01.mech.23.2.17210.
  • [30] Moharram MI, Bompa DV, Elghazouli AY. Experimental and numerical assessment of mixed RC beam and steel column systems. J Constr Steel Res. 2017;131:51–67. https ://doi.org/10.1016/j.jcsr.2016.12.019.
  • [31] CEN (European Committee for Standardization) EN 197-1:2011 Cement. Composition, specifications and conformity criteria for common cements, CEN, Brussels (Belgium); 2011.
  • [32] SikaFume-additive for durable and high-ultimate-strength concrete-datasheed. https ://aus.sika.com/dms/getdo cumen t.get/4f26f c3a-352c-317d-b68d-6ac5e c8306 5d/SikaF ume-en-AU-(02-2018)-1-1.pdf. Accessed 4 Aug 2019.
  • [33] BASF-MasterGlenium ACE 440 datasheet. https ://asset s.maste r-build ers-solut ions.basf.com/it-it/basf-maste rglen ium%20ace%20440 %20oct 2016%20en.pdf. Accessed 4 Aug 2019.
  • [34] Baumbach metal-steel fibres for concrete reinforcement. https ://www.baumb ach-metal l.de/cms/uploa d/Prosp ekte/Prosp ekt_allge mein_beton beweh rung.pdf (in German).
  • [35] Krampeharex-wire fibre data sheet. https ://www.krampehare x.com/typo3 temp/pdf/PDB_Kramp eHare x-wire-fibre-DM_6_0_175.pdf?15579 91886 . Accessed 4 Aug 2019.
  • [36] Magureanu C, Sosa I, Negrutiu C, Heghes B. Bending and shear behavior of ultra-high performance fiber reinforced concrete. High Perform Struct Mater V. 2010;112:79.
  • [37] Wang Z, Hu H, Hajirasouliha I, Guadagnini M, Pilakoutas K. Tensile stress–strain characteristics of rubberised concrete from flexural tests. Constr Build Mater. 2020;236:117591. https ://doi.org/10.1016/j.conbu ildma t.2019.11759 1.
  • [38] Uchida Y, Rokougo K, Koyanagi W. Determination of tension softening curves of concrete by means of bending tests. In: ECF8, Torino; 1990.
  • [39] DSS (Dassault Systčmes Simulia Corp). ABAQUS analysis user’s manual 6.14-2; 2014.
  • [40] Sakr MA. Effect of cyclic loadings on the shear strength and reinforcement slip of RC beams. Civ Eng J. 2017;3(2):111–23. https://doi.org/10.28991 /cej-2017-00000 078.
  • [41] fib-Fédération internationale du béton. Model Code 2010-final draft, vols. 1–2, fib Bulletins 65–66, Lausanne (Switzerland); 2012.
  • [42] Hordijk DA. Local approach to fatigue of concrete. Doctorate dissertation. Delft: Delft University of Technology; 1991.
  • [43] Wosatko A, Pamin J, Polak MA. Application of damage–plasticity models in finite element analysis of punching shear. Comput Struct. 2015;151:73–85. https ://doi.org/10.1016/j.compstruc.2015.01.008.
  • [44] Graybeal B, Davis M. Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete. ACI Mater J. 2008;105(6):603.
  • [45] Bažant ZP, Oh BH. Crack band theory for fracture of concrete. Matér Constr. 1983;16(3):155–77. https ://doi.org/10.1007/BF02486267 .
  • [46] Manju R, Sathya S, Sylviya B. Shear strength of high-strength steel fibre reinforced concrete rectangular beams. Int J Civ Eng Technol (IJCIET). 2017;8(8):1716–29.
  • [47] Spinella N, Colajanni P, La Mendola L. Nonlinear analysis of beams reinforced in shear with stirrups and steel fibers. ACI Struci J. 2012;109(1):53.
  • [48] Ashour SA, Hasanain GS, Wafa FF. Shear behavior of highstrength fiber reinforced concrete beams. ACI Struct J. 1992;89(2):176–84.
  • [49] Bae BI, Choi HK, Choi CS. Flexural and shear capacity evaluation of reinforced ultra-high strength concrete members with steel Rebars. In: Key engineering materials, vol. 577; 2014, pp. 17–20. https ://doi.org/10.4028/www.scien tific .net/KEM.577-578.17.
  • [50] Cho SH, Kim YI. Effects of steel fibers on short beams loaded in shear. ACI Struct J. 2003;100(6):765–74.
  • [51] Kwak KH, Suh J, Hsu CTT. Shear-fatigue behavior of steel fiber reinforced concrete beams. ACI Struct J. 1991;88(2):155–60.
  • [52] Cavagnis F, Ruiz MF, Muttoni A. A mechanical model for failures in shear of members without transverse reinforcement based on development of a critical shear crack. Eng Struct. 2018;157:300–15. https ://doi.org/10.1016/j.engst ruct.2015.09.015.
  • [53] CEN (European Committee for Standardization). EN 1992-1-1. Eurocode 2: design of concrete structures-part 1-1: general rules and rules for buildings Brussels; 2004.
  • [54] Jacobs JP. Commentary to Eurocode 2. Brussels: European Concrete Platform ASBL; 2008. p. 168.
  • [55] Huber P, Huber T, Kollegger J. Investigation of the shear behavior of RC beams on the basis of measured crack kinematics. Eng Struct. 2016;113:41–58. https ://doi.org/10.1016/j.engstruct.2016.01.025.
  • [56] Mphonde AG. Aggregate interlock in high strength reinforced concrete beams. Proc Inst Civ Eng. 1988;85(3):397–413. https ://doi.org/10.1680/iicep .1988.444.
  • [57] Voo YL, Poon WK, Foster SJ. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. J Struct Eng. 2010;136(11):1393–400. https ://doi.org/10.1061/(ASCE)ST.1943-541X.00002 34.
  • [58] Hamrat M, Boulekbache B, Chemrouk M, Amziane S. Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes. Adv Struct Eng. 2010;13(1):29–41. https ://doi.org/10.1260/1369-4332.13.1.29.
  • [59] Angelakos D, Bentz EC, Collins MP. Effect of concrete strength and minimum stirrups on shear strength of large members. ACI Struct J. 2001;98(3):291–300.
  • [60] Pansuk W, Nguyen TN, Sato Y, Den Uijl JA, Walraven JC. Shear capacity of high performance fiber reinforced concrete I-beams. Constr Build Mater. 2017;157:182–93. https ://doi.org/10.1016/j.conbu ildma t.2017.09.057.
  • [61] Ng TS, Amin A, Foster SJ. The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear. Mag Concr Res. 2013;65(5):308–18. https ://doi.org/10.1680/macr.12.00081 .
  • [62] Voo JYL, Foster SJ. Variable engagement model for the design of fibre reinforced concrete structures. In: Proceedings advanced materials for construction of bridges, buildings, and other structures III. ECI Digital Archives; 2003.
  • [63] Sagaseta J, Vollum RL. Shear design of short-span beams. Mag Concr Res. 2010;62(4):267–82. https ://doi.org/10.1680/macr.2010.62.4.267.
  • [64] Tahenni T, Chemrouk M, Lecompte T. Effect of steel fibers on the shear behavior of high strength concrete beams. Constr Build Mater. 2016;105:14–28. https ://doi.org/10.1016/j.conbu iloma t.2015.12.010.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64cf86de-7f4d-4bd9-9b29-b36535793d25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.