PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stable absorption compensation with lateral constraint

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of seismic absorption distorts seismic record and reduces seismogram resolution, which can be partially compensated by application of absorption compensation algorithms. Conventional absorption compensation techniques are based on 1D forward model with each seismic trace being compensated independently. Therefore, the 2D results combined by each compensation trace may be noisy and discontinuity. To eliminate this issue, we extend the 1D forward model to the 2D forward system and further add an additional lateral constraint to the compensation algorithm for enforcing the lateral continuity of the compensated section. Solving the proposed laterally constrained absorption compensation (LCAC) problem, we simultaneously obtain the multiple compensated traces with lateral smoother transition and higher signal-to-noise ratio (S/N). We testify the efectiveness of the proposed method by applying both synthetic and feld data. Synthetic data examples demonstrate the superior performance of the LCAC algorithm in terms of improving algorithmic stability and protecting lateral continuity. The feld data tests further indicate its ability to not only improve seismic resolution, but also inhibit the amplifcation of high-frequency noise.
Czasopismo
Rocznik
Strony
1039--1048
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • China University of Petroleum-Beijing, School of Geophysics, State Key Lab of Petroleum Resources and Prospecting, Key Lab of Geophysical Exploration of CNPC, Changping, Beijing 102249, China
autor
  • China University of Petroleum-Beijing, School of Geophysics, State Key Lab of Petroleum Resources and Prospecting, Key Lab of Geophysical Exploration of CNPC, Changping, Beijing 102249, China
autor
  • China University of Petroleum-Beijing, School of Geophysics, State Key Lab of Petroleum Resources and Prospecting, Key Lab of Geophysical Exploration of CNPC, Changping, Beijing 102249, China
autor
  • China University of Petroleum-Beijing, School of Geophysics, State Key Lab of Petroleum Resources and Prospecting, Key Lab of Geophysical Exploration of CNPC, Changping, Beijing 102249, China
autor
  • Institute of Geophysics, Institute of Exploration and Development, Xinjiang Oilfeld, Ürümqi 830000, Xinjiang, China
Bibliografia
  • 1. Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69(6):752–761
  • 2. Auken E, Christiansen AV, Jacobsen BH, Foged N, Sørensen KI (2005) Piecewise 1D laterally constrained inversion of resistivity data. Geophys Prospect 53(4):497–506
  • 3. Bickel SH, Natarajan RR (1985) Plane-wave Q deconvolution. Geophysics 50(9):1426–1439
  • 4. Braga ILS, Moraes FS (2013) High-resolution gathers by inverse filtering in the wavelet domain. Geophysics 78(2):V53–V61
  • 5. Chai X, Wang S, Yuan S, Zhao J, Sun L, Wei X (2014) Sparse reflectivity inversion for nonstationary seismic data. Geophysics 79(3):V93–V105
  • 6. Clapp R, Biondi B, Claerbout JF (2004) Incorporating geologic information into reflection tomography. Geophysics 69(2):533–546
  • 7. Du X, Li G, Zhang M, Li H, Yang W, Wang W (2018) Multichannel band-controlled deconvolution based on a data-driven structural regularization. Geophysics 83(5):R401–R411
  • 8. Dutta G, Schuster GT (2014) Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 79(6):S251–S262
  • 9. Futterman WI (1962) Dispersive body waves. J Geophys Res 67(13):5279–5291
  • 10. Haghshenas Lari H, Gholami A (2019) Nonstationary blind deconvolution of seismic records. Geophysics 84(1):V1–V9
  • 11. Hamid H, Pidlisecky A (2015) Multitrace impedance inversion with lateral constraints. Geophysics 80(6):M101–M111
  • 12. Hansen P, O’Leary DP (1993) The use of L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14:1487–1503
  • 13. Hargreaves ND, Calvert AJ (1991) Inverse Q filtering by Fourier transform. Geophysics 56(4):519–527
  • 14. Ji Y, Yuan S, Wang S (2019) Multi-trace stochastic sparse–spike inversion for reflectivity. J Appl Geophys 161:84–91
  • 15. Kjartansson E (1979) Constant Q wave propagation and attenuation. J Geophys Res Solid Earth 84(B9):4737–4748
  • 16. Kolsky H (1956) LXXI. The propagation of stress pulses in viscoelastic solids. Philos Mag 1(8):693–710
  • 17. Li G, Liu Y, Zheng H, Huang W (2015) Absorption decomposition and compensation via a two-step scheme. Geophysics 80(6):V145–V155
  • 18. Li G, Sacchi MD, Zheng H (2016) In situ evidence for frequency dependence of near-surface Q. Geophys J Int 204(2):1308–1315
  • 19. Ma X, Li G, Wang S, Yang W, Wang W (2017) A new method for Q estimation from reflection seismic data. In: 87th Annual Interational Meeting, SEG Expanded Abstracts, 5496–5500
  • 20. Ma M, Zhang R, Yuan SY (2019) Multichannel impedance inversion for nonstationary seismic data based on the modified alternating direction method of multipliers. Geophysics 84(1):A1–A6
  • 21. Ma X, Li G, Li H, Yang W (2020) Multichannel absorption compensation with a data-driven structural regularization. Geophysics 85(1):V71–V80
  • 22. Margrave GF (1998) Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering. Geophysics 63(1):244–259
  • 23. Margrave GF, Lamoureux MP, Henley DC (2011) Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics 76(3):W15–W30
  • 24. Mittet R, Sollie R, Hokstad K (1995) Prestack depth migration with compensation for absorption. J Appl Geophys 34(2):1485–1494
  • 25. Oliveira SAM, Lupinacci WM (2013) L1 norm inversion method for deconvolution in attenuating media. Geophys Prospect 61(4):771–777
  • 26. Robinson JC (1979) A technique for the continuous repreientation of dispersion in seismic data. Geophysics 44(8):1345–1351
  • 27. Sacchi MD (1997) Reweighting strategies in seismic deconvolution. Geophys J Int 129:651–656
  • 28. Schmalz T, Tezkan B (2007) 1D-Laterally Constraint Inversion (1D-LCI) of Radiomagnetotelluric Data from a Test Site in Denmark. Kolloquium Elektromagnetische Tiefenforschung 199-204
  • 29. Van der Baan M (2012) Bandwidth enhancement: inverse Q filtering or time-varying Wiener deconvolution? Geophysics 77(4):V133–V142
  • 30. Wang Y (2002) A stable and efficient approach of inverse Q filtering. Geophysics 67(2):657–663
  • 31. Wang Y (2006) Inverse Q-filter for seismic resolution enhancement. Geophysics 71(3):V51–V60
  • 32. Wang SD (2011) Attenuation compensation method based on inversion. Appl Geophys 8(2):150–157
  • 33. Wang Y, Guo J (2004) Modified Kolsky model for seismic attenuation and dispersion. J Geophys Eng 1(3):187–196
  • 34. Wang Y, Liu W, Cheng S, She B, Hu G, Liu W (2018a) Sharp and laterally constrained multitrace impedance inversion based on blocky coordinate descent. Acta Geophys 66:623–631
  • 35. Wang Y, Ma X, Zhou H, Chen Y (2018b) ${L}_{1-2}$ minimization for exact and stable seismic attenuation compensation. Geophys J Int 213(3):1629–1646
  • 36. Wang Y, Zhou H, Chen H, Chen Y (2018c) Adaptive stabilization for Q-compensated reverse time migration. Geophysics 83(1):S15–S32
  • 37. Wang Y, Zhou H, Zhao X, Zhang Q, Chen Y (2019) Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme. Geophysics 84(4):S301–S315
  • 38. Yilmaz O (2001) Seismic data analysis. Society of Exploration Geophysicists, Tulsa
  • 39. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212
  • 40. Yuan S, Wang S, Ma M, Ji Y, Deng L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55(11):6182–6194
  • 41. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164
  • 42. Zhang C, Ulrych TJ (2007) Seismic absorption compensation: a least squares inverse scheme. Geophysics 72(6):R109–R114
  • 43. Zhang R, Sen MK, Srinivasan S (2013) Multi-trace basis pursuit inversion with spatial regularization. J Geophys Eng 10(3):035012
  • 44. Zhao X, Zhou H, Wang Y, Chen H, Zhou Z, Sun P, Zhang J (2018) A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 83(5):S459–S476
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64cbf1f7-dded-4b8c-a926-36a126500885
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.