PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of waves in the layer of a thermo-viscoelastic transversely isotropic medium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article is presented to enhance our knowledge about the propagation of Lamb waves in the layer of a viscoelastic transversely isotropic medium in the context of thermoelasticity with GN theory of type-II and III. Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the numerical solution was carried out for cobalt and the dispersion curves, amplitudes of displacements and temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of anisotropy. Some particular cases are also deduced.
Rocznik
Strony
21--35
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
  • Department of CS&IT, Mazoon College Muscat, Sultanate of Oman, OMAN
autor
  • Department of Mathematics and Applied Sciences MEC Muscat, Sultanate of Oman, OMAN
Bibliografia
  • [1] Brune J.N. (1970): Tectonic stress and the spectra of seismic shear waves from earthquakes. – [J]. J. Geophys. Res., vol.75, pp.4997-5009.
  • [2] Lord H. and Shulman Y.A. (1967): Generalized dynamical theory of thermoelasticity. – J. Mech. Phys. Solid, vol.15, pp.299-309.
  • [3] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – J. Elasticity, vol.2, pp.1-5.
  • [4] Chandrasekhariah D.S. (1998): Hyperbolic thermoelasticity: A review of recent literature. – Appl. Mech. Rev., vol.51, pp.705-729.
  • [5] Hetnarski R.B. and Iganaczak J. (1999): Generalized thermoelasticity. – J. Thermal Stresses, vol.22, pp.451-470.
  • [6] Green A.E. and Naghdi P.M. (1995): A united procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of Interacting continua. – Proc. Royal Soc. London Ser. A, vol.448, pp.335-356, pp.357-377, pp.379-388.
  • [7] Green A.E. and Naghdi P.M. (1991): A re-examination of the basic postulates of thermomechanics. – Proc. Royal Soc. London Ser. A, vol.432, pp.171-194.
  • [8] Green A.E. and Naghdi P.M. (1992): On undamped heat waves in an elastic solid. – J. Thermal Stresses, vol.15, pp.253-264.
  • [9] Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. – J. Elasticity, vol.31, pp.189-208.
  • [10] Quintanilla R. (2002): Thermoelasticity without energy dissipation of materials with microstructure. – Applied Mathematical Modelling, vol.26, pp.1125-1137.
  • [11] Taheri H., Fariboz S. and Eslami M.R. (2004): Thermoelasticity solution of a layer using the Green-Neghdi model. – Journal of Thermal Stresses, vol.27, pp.795-809.
  • [12] Puri P. and Jordan P.M. (2004): On the propagation of plane waves in type-III thermoelastic media. – Proc. R. Soc. London. A, vol.460, pp.3203-3221.
  • [13] Lazzari B. and Nibbi R. (2008): On the exponential decay in thermoelasticity without energy dissipation an of type III in prence of an absorbing boundary. – J. Math. Anal. Appl., vol.338, pp.317-329.
  • [14] Roychoudhuri S.K. and Bandyopadhyay N. (2007): Interactions due to body forces in generalized thermo-elasticity III. – Comptures and Mathematics with Applications, vol.54, pp.1341-1352.
  • [15] Mukhopadhyay S. and Roushan Kumar (2008): A problem on thermoelastic interactionsin an infinite medium with a cylindrical hole in generalized thermoelasticity III. – Journal of Thermal Stresses, vol.31, pp.455-457.
  • [16] Quintanilla R. and Racke R. (2003): Stability inthermoelasticity of type III. – Discrete and Continuous Dynamical Systems-Series B, vol.3, No.3, pp.383-400.
  • [17] Quintanilla R. (2009): Type II thermoelasticity. A new aspect. – Journal of Thermal Stresses, vol.32, pp.290-307.
  • [18] Quintanilla R. (2001): Structural stability and continuous dependence of solutions of thermoelasticity of type III. – Discrete and Continuous Dynamical Systems-Series B, vol.1, No.4, pp.463-470.
  • [19] Quintanilla R. and Straughan B. (2004): A note on discontinuity waves in type III thermoelasticity. – Proc. R. Soc. Lond. A, vol.460, pp.1169-1175.
  • [20] Leseduarte M.C. and Quintanilla R. (2006): Thermal stresses in type III thermoelasticplates. – Journal of Thermal Stresses, vol.29, pp.485-503.
  • [21] Slaughter W.S. (2002): The Linearized Theory of Elasticity. – Birkhauser.
  • [22] Kolsky H. (1963): Stress Waves in Solids. – Oxford: Clarendon Press; New York: Dover Press.
  • [23] Dhaliwal R.S. and Singh A. (1980): Dynamic coupled thermoelasticity. – Hindustan Publication Corporation, New Delhi, India, 726.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64c807aa-6df5-4e04-b8cd-0127077c68dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.