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The article is presented to enhance our knowledge about the propagation of Lamb waves in the layer of a 
viscoelastic transversely isotropic medium in the context of thermoelasticity with GN theory of type-II and III. 
Secular equations for symmetric and skew-symmetric modes of wave propagation in completely separate terms 
are derived. The amplitudes of displacements and temperature distribution were also obtained. Finally, the 
numerical solution was carried out for cobalt and the dispersion curves, amplitudes of displacements and 
temperature distribution for symmetric and skew-symmetric wave modes are presented to evince the effect of 
anisotropy. Some particular cases are also deduced. 
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1. Introduction 
 
      The propagation of waves in thermoelastic materials has many applications in various fields of 
science and technology, namely, atomic physics, industrial engineering, thermal power plants, submarine 
structures, pressure vessel, aerospace, chemical pipes and metallurgy. The importance of thermal stresses in 
causing structural damages and changes in functioning of the structure is well recognized whenever thermal 
stress environments are involved. Therefore, the ability to predict electro-dynamics stress induced by a 
sudden thermal loading in composite structures is essential for the proper and safe design and the knowledge 
of its response during the service in these severe thermal environments. 
  The classical theory of thermo-elasticity involving infinite speed of propagation of thermal signals, 
contradicts the physical facts. During the last three decades, non-classical theories involving finite speed of 
heat transportation in elastic solids have been developed to remove this paradox. In contrast to the 
conventional coupled thermo-elasticity theory [1], which involves a parabolic-type heat transport equation, 
these generalized theories involve a hyperbolic-type heat transport equations, that are supported by 
experiments exhibiting the actual occurrence of wave-type heat transport in solid, called the second sound 
effect. The extended thermo-elasticity theories proposed by Lord and Shulman [2], incorporated a flux- rate 
term into Fourier’s law of heat conduction, and formulated a generalized form that involves a hyperbolic-
type heat transport equation and admits finite speed of thermal signal. Green and Lindsay [3] developed 
temperature-rate-dependent thermo-elasticity theory by introducing relaxation time factors that does not 
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violate the classical Fourier law of heat conduction and this theory also predicts a finite speed for heat 
propagation. 
  In recent surveys, Chandrasekharaiah [4], Hetnarski and Ignazack [5] considered the theory proposed 
by Green and Naghdi [6-9] as an alternate way of formulating the propagation of heat. This theory is 
developed in a rational way to produce a fully consistent theory that is capable of incorporating thermal pulse 
transmission in a very logical manner. They make use of general entropy balance rather than an entropy 
inequality. The development is quite general and the characterization of material response for the thermal 
phenomena is based on three types of constitutive function that are labeled as type I, type II, and type III. 
When theory of type I is linearized, the parabolic equation of heat conduction arises. Here, we are interested 
in the theory of type II (a limiting case of the type III), which does not admit energy dissipation. This theory 
is usually called “without energy dissipation”. Following Green and Naghdi, the theory of thermoelasticity 
without energy dissipation is a good model to explain the heat conduction in continua. 
       Quintanilla [10] in 2002, proposed a model of the thermoelastic theory without energy dissipation for 
materials with affine microstructure. In this article he obtained the equations for the linear theory and also 
obtained uniqueness theorem for materials with a centre of symmetry. Taheri et al. [11] and Puri et al. [12] 
employed the Green-Naghdi linear theory of thermoelasticity of types II and III to study the thermal and 
mechanical waves in a layer of homogeneous thermoelastic solid and plane waves, respectively. Many 
researchers investigated different types of problems in the theory of thermoelasticity of type III [13-20]. The 
inelastic behavior of the Earth’s material plays an important role in changing the characteristics of seismic 
waves, in defining seismic source functions Brune [21], and in determining the internal structure of the 
Earth. The general theory of viscoelasticity describes the linear behavior of both elastic and inelastic 
materials and provides the basis for describing the attenuation of seismic waves due to inelasticity. 
        The main objective of the present paper is to study the propagation of Lamb waves in the layer of a 
viscoelastic transversely isotropic medium in the context of thermoelasticity with GN theory of type-II and 
III. This study has many applications in various fields of science and technology, namely, atomic physics, 
industrial engineering, thermal power plants, submarine structures, pressure vessel, aerospace, chemical 
pipes and metallurgy. After developing the solution, frequency equations connecting the phase velocity with 
the wave number, for symmetric and skew-symmetric wave modes are derived. The amplitude ratios of 
displacements and temperature distribution are also obtained. The dispersion curves, attenuation coefficients, 
amplitude ratio of displacements and temperature distribution for symmetric and skew-symmetric waves are 
presented and illustrated graphically to evince the effect of anisotropy. 
 
2. Basic equations 
 
   The constitutive relations and balance laws in a general anisotropic viscoelastic medium in the 
context of thermoelasticity with GN theory of type-II and III, possessing a center of symmetry, in the 
absence of body forces are given by 
 

Constitutive relations:    
 
                 ij ijkl kl ijt c e T                                                                                        (2.1) 
 

where 
 

   , ,ji i j j i
1

e u u
2

  ,              ijkl ijkl ijklc c c
t

  


. 

 
Balance law:                               
 
              ,ij j it u  .                                                                                                        (2.2) 
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Equation of heat conduction: 
 

  * *
, , , ,  , , ,ij ij ij ij o ij i jK T K T c T T u i j 1 2 3                                                       (2.3) 

 
where ijt  is the stress tensor,   is the bulk mass density, iu  is the component of displacement vector, T is the 

temperature change of a material particle, oT  is the reference uniform temperature of the body, * *
ij i ijK k    

(i not summed) are the characteristic constants of the theory, ij i ijK k   (i not summed) is the thermal 

conductivity, ij i ij     (i not summed) is the thermal elastic coupling tensor, *  c  is the specific heat at 

constant strain, ijklc , , ijkl ijklc c   are characteristic constants of material and the following symmetric properties 

are satisfied 
 

                  ijkl klij jiklc c c  ,            * *
ij jiK K ,             ij jiK K ,            ij ji   . 

 
3. Problem formulation 
 
  We have used appropriate transformations, following Slaughter [21], on the set of Eq.(2.1) to derive 
equations for a viscoelastic transversely isotropic medium and restricted our analysis to the two dimensional 
problem. In the present investigation, we consider an infinite layer with traction free surfaces at  3x H   
(layer of thickness 2H), which consists of a homogeneous, viscoelastic transversely isotropic thermoelastic 
material. We take the origin of the coordinate system  ; ; 1 2 3x x x  on the middle surface of the layer. The 

 1 2x x  plane is chosen to coincide with the middle surface and 3x  axis normal to it along the thickness. For 
the two-dimensional problem, we assume the components of the displacement vector of the form 
                          
    ; ; 1 3u 0 uu ,                                                                                   (3.1) 

 

and assume that the solutions are explicitly independent of 2x  i.e., 
2

0
x





. Thus the field equations and 

constitutive relations for such a medium reduce to 
 

                 
22 2 2

31 1 1
11 55 13 55 12 2 2

1 3 11 3

uu u uT
c c c c

x x xx x t

  
     

    
,  (3.2) 

 

                 
2 2 22

3 3 31
55 33 13 55 32 2 2

1 3 11 3

u u uu T
c c c c

x x xx x t

   
     

    
,        (3.3) 

 

  * * *
333 3 3 2 2

31
1 3 1 3 1 o 3 o2 2 3 2 2 2 2

1 1 1 3 3 1

uuT T T T T
K K K K c T T

t x t x x x t x t x t

    
      

        
,  (3.4) 

 
and we have used the notations 11  1, 33  3, 13  5 for the material constants. 
      For further considerations, it is convenient to introduce the non-dimensional variables defined by 
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   ,  ,   ,  ,  iji i
i i ij

55 o o

tx u t T
x u t t T

L L c t T
                                       (3.5) 

 

where L, ot , oT  are parameters having dimensions of length, time and temperature ( oC ), respectively. 

 
4. Boundary condition 
 
 The boundaries of the plate are assumed to be stress free thermally insulated. Therefore, we consider 
the following types of boundary conditions: 

 
Mechanical Conditions 
             
 The non-dimensional mechanical boundary conditions at 3x H   for stress free and rigidly fixed 
boundaries, respectively, are given by 
 
    ,    33 31t 0 t 0                   (4.1) 
 
where 
 

              31
33 13 33 3

1 3

uu
t c c T

x x


  

 
                                                                             (4.2) 

 
Thermal conditions 
 
 The non-dimensional thermal boundary conditions at 3x H   are given by 
 

              
3

T
hT 0

x


 


                                                                                                            (4.3) 

 
where h is the surface heat transfer coefficient; 

  h 0  corresponds to thermally insulated boundaries and 
  h  refers to isothermal boundaries. 

 
5. Normal mode analysis and solution of the problem 
 
 We assume the solution for , , 1 3u u T  representing propagating waves in the 1 3x x  plane of the form 
   

                ( )   ,  ,   , ,  1 3i x mx ct
1 3 3 1u u T 1 u e    u T                            (5.1) 

 
where   is the wave number, c   is the angular frequency and c is the phase velocity of the wave, m is 

the unknown parameter which signifies the penetration depth of the wave, ,  3u T  are, respectively, the 

amplitude ratios of the displacement 3u  and temperature distribution T to that of the displacement 1u .  
        With the help of Eqs (3.5) and (5.1), Eqs (3.2)-(3.4) reduced to (after suppressing primes) 
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    ( )1 3i x mx ct2
1 2 3 3 1um a ma a u 0T e       , 

 

      1 3i x mx ct2
4 5 3 6 1ma m a u a mT u e 0      , (5.2) 

 

      1 3i x mx ct2
7 8 3 9 1a a mu a m T u e 0        
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. 

 

    The condition for the non trivial solution of system of Eqs (5.2), yields a cubic equation in 2m  as 
 

  6 4 2m Am Bm C 0                                                               (5.3) 
 
where 
 
                  1 9 5 6 8 2 4A a a a a a a a     ,              ( )5 3 7 1 9C a a a a a  ,  
 
               1 5 6 8 9 5 9 2 4 9 6 7 3 7 3 4 8B a a a a a a a a a a a a a a a a a        . 

 
 Lamb waves exhibit velocity dispersion, i.e., velocity of propagation c depends on the frequency as 
well as on elastic constants and density of the materials. These waves are dispersive plate waves that occur 

for traction-free forces on both surfaces of the plate. The roots of this equation give three values of 2m , and 

hence of 2c . Three positive values of c will be the velocities of propagation of three possible waves, viz. the 
quasi-longitudinal wave, quasi-transverse wave and quasi thermal wave. So Eq.(5.3) leads to the following 
solution for displacements and temperature distribution  
 

          ( ), , cos sin , , 1
3

i x ct
1 3 k k 3 k k 3 k k

k 1

u u T A m x B m x 1 r t e  



                                     (5.4)
 

 

where 
 

  
 

 
,

2
k 4 k 4 9 6 7

k 4 2
k k 9 5 6 8 5 9

m a m a a a a
r

m m a a a a a a

    
              

( )
.

( )

2
4 8 7 k 5 7

k 4 2
k k 9 5 6 8 5 9

a a a m a a
t

m m a a a a a a

 
 

     



26  R.R.Gupta and R.R.Gupta 

6. Derivation of secular equation 
 
 Substituting the values of , 1 2u u  and T in the boundary conditions given by Eqs (4.1) and (4.3) at the 
surfaces H  of the layer, together with the help of Eq.(4.2), we obtain 
 

        , 
3

1 2k k 3i k k 1 2k k 3k k k
k 1

g g c g s A g g s g c B 0


          

 

     ,
3

k 6 k k 6 k k
k 1

A g s B g c 0


    

 

        ,   
3

1 2k k 3k k k 1 2k k 3k k k
k 1

g g c g s A g g s g c B 0


          

   (6.1) 

    ,
3

k 6 k k 6 k k
k 1

A g s B g c 0


     

 

      ,  
3

4k k 5k k k 4k k 5k k k
k 1

g c g s A g s g c B 0


        

 

      ,  
3

4k k 5k k k 4k k 5k k k
k 1

g c g s A g s g c B 0


        

where 

     sin ,    cos ,    ,       , 13 3 k
k k 3 k k 3 1 2k

33 13

c t
s m x c m x g g

c c


         

  ,       ,  55
3k k k 4k k

33

c
g r m g r

c
         ,  ,        , , 55

5k k 6 k k k
33

c
g m g t m k 1 2 3

c
     . 

 
     In order to satisfy the six boundary conditions given by Eqs (4.1) and (4.3) simultaneously, the 
determinant of the coefficients of kA  and kB , , , k 1 2 3  in Eqs (6.1) must vanish. This gives an equation for 
the frequency of the layer oscillations. The frequency equation for the waves in the present case, after 
applying lengthy algebraic reductions and manipulations of the determinant leads to the following secular 
equation 
 

  

   
   
   

[ ]

[ ]

[ ] .

1 61 42 1 23 61 43 1 22

2 62 43 1 21 62 41 1 23

3 63 41 1 22 63 42 1 21

T g g g g g g g g

T g g g g g g g g

T g g g g g g g g 0







     

      

       

    (6.2) 

 

 These are the frequency equations which correspond to the symmetric and skew symmetric modes 
with respect to the medial plane   3x 0 . Here, 
 

         ,           ,  ,  k k 3T tan m x k 1 2 3   . 
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 The solution of this equations also reveals the precise form of the particle motion, which Eq.(5.4) 
represents in a generic form only. It is found that in Eq.(6.2) the superscript ' '  gives rise to a family of 
waves whose motion is symmetrical about the mid-plane of the plate (the plane 3x 0  ), while the 
superscript ' '  gives rise to a family of waves whose motion is anti-symmetrical about the mid-plane. 
 
6.1. Amplitude of displacements and temperature distribution 
 
 In this section, the amplitude of displacement components and temperature distribution for 
symmetric and skew symmetric mode of plane waves can be obtained as 
 

          ( ), cos ,  sin( ) 1
3

x ct
1 1 k k 3 k k 3sy asy

k 1

u u A m x B m x e 



   , 

 

          ( ), sin ,  cos( ) 1
3

x ct
2 2 k k k 3 k k 3sy asy

k 1

u u r A m x B m x e 



   , 

 

          ( ), cos ,   sin( ) 1
3

x ct
k k k 3 k k 3sy asy

k 1

T T t A m x B m x e 



   .  

 
6.2. Specific loss 
 
 The specific loss is the ratio of the energy dissipated (Δ )W  in taking a specimen through a stress 
cycle to the elastic energy W stored in the specimen when the strain is a maximum. For a plane sinusoidal 

wave of small amplitude, Kolsky [22] shows that the specific loss 
ΔW

W
 is 4  times the absolute value of the 

ratio of the imaginary part to the real part of, i.e. 
 

  
Δ ( )

Re( )

W Im
4

W


 


. 

 

 He noted that the specific loss is the most direct method of defining internal friction for a material. 
 
7. Numerical results and discussion 
 
 In order to illustrate the theoretical results obtained in the preceding sections, we now present some 
numerical results. The following relevant physical constants for cobalt material are taken from Dhaliwal and 
Singh [23] for a thermoelastic transversely isotopic material, 
 

  . / ,11 2
11c 3 071 10 N m       . / ,11 2

12c 1 650 10 N m      . / ,11 2
13c 1 027 10 N m     

 

  . / ,11 2
33c 3 581 10 N m       . / ,11 2

5511c 1 51 10 N m      . / ,6 2
1 7 04 10 N m K     

 

  . /6 2
3 6 90 10 N m K   ,     . /3 38 836 10 Kg m   ,    . / .2

1K 6 90 10 W m K  ,  
 

  . / .2
3K 7 01 10 W m K  ,    * . .2

1K 1 313 10 W sec  ,     * . .2
3K 1 54 10 W sec  , 

 

  * . / .2c 4 27 10 J Kg K  ,     T 298K .  
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 For a particular model of a thermo-visco-elastic transversely isotropic solid the relevant parameters 
are expressed as 
 

   1
11 11 1c c 1 Q   ,         1

12 12 2c c 1 Q   ,         1
13 13 3c c 1 Q   ,  

 

   1
33 33 4c c 1 Q   ,       1

55 55 5c c 1 Q     

 

where   . ,   1
1Q 10 05      . , 1

2Q 3 04         . , 1
3Q 3 05         . , 1

4Q 005          .1
5Q 2 05  . 

 
 The corresponding plots of non-dimensional phase velocity, attenuation coefficient and the specific loss 
with non-dimensional real part of wave number (R) in the case of H=1 for symmetric and skew-symmetric 
modes are given in Figs 1-6. Here, a solid line with and without a center symbol represents the variations 
corresponding to the variations for a viscoelastic transversely isotropic medium in the context of thermo-
elasticity with GN theory of type-II and III (TIVWED) and, for comparison, broken lines with and without a 
center symbol represent the variations corresponding to a transversely isotropic thermoelastic solid (TIWED). 
The lines shown in the figures without a center symbol represent the variations corresponding to the initial mode 
(n=1) of wave propagation, lines with a center symbol (o) represent the variations corresponding to the second 
mode (n=2) and lines with a center symbol (x) represent the variations corresponding to the final mode (n=3) of 
wave propagation. 
  Figures 1 and 4 show the variations of phase velocity with respect to wave number for symmetric 
and skew symmetric modes, respectively. It is clear from Fig.1 that the value of phase velocity for all the 
modes of wave propagation, sharply decreases and flattens out to become constant at the end for both the 
cases of (TIVWED) and (TIWED). However, the variation pattern for the case of the skew symmetric mode 
is similar to the symmetric mode except its amplitude of oscillation. 
 Figures 2 and 5 show the variation of the attenuation coefficient with respect to wave number, for 
symmetric and skew symmetric modes. The value of attenuation goes on increasing with an increase in wave 
number for all the modes. It can be seen that the value of the attenuation coefficient for all the modes (n=1, 
2, 3) and for both symmetric and skew symmetric modes is lower for TIWED as compared to those of 
TIVWED. 
       Figure 3 shows the value of the specific loss for the symmetric mode. It is observed form this figure 
that for the symmetric mode, the value of specific loss initially appears to be same, and then become higher 
for the case of TIVWED as compared to those for TIWED, while the reverse behavior is observed for higher 
modes (n=2, 3). While from Fig.6 it can be seen that the value of the specific loss for all the modes increases 
with an increase in wave number and the values for TIVWED is higher as compared to those of TIWED. 
   Figures 5-7 show the variations of amplitude ratios of u1, u3 and T with respect to the thickness of 
layer for symmetric and skew symmetric modes. It is observed from Fig.5 that the amplitude ratio of u1 
alternately increases or decreases with an increase in the thickness of layer for the skew symmetric mode and 
oscillates with a very small amplitude for the symmetric mode in the case of (TIVWED). However for 
(TIWED), its value initially decreases and then slowly increases with an increase in H. The magnitude of the 
amplitude ratio of u1 is decreased due to anisotropy. It is observed from Fig.6 that the value of the amplitude 
ratio of normal displacement u3 for the skew symmetric mode is initially constant, then decreases sharply and 
then increases with an increase in H and for the symmetric mode it increases with an increase in H for 
(TIVWED). However, for (TIWED) its value increases with an increase in x for both the symmetric and 
skew symmetric modes. It is evident from Fig.7 that the variations in the value of the amplitude ratio of T is 
similar to that of the normal displacement u3 for (TIVWED), while for (TIWED) and both the symmetric and 
skew symmetric mode its value initially increases then remains constant and with a further increase in H its 
value decreases with thickness H. 
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Fig.1. Variations of phase velocity with wave number for symmetric mode. 
 

 
 

Fig.2. Variations of attenuation coefficient with wave number for symmetric mode. 
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Fig.3. Variations of specific loss with wave number for symmetric mode. 
 

 
 

Fig.4. Variations of phase velocity with wave number for skew symmetric mode. 
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Fig.5. Variations of attenuation coefficient with wave number for skew symmetric mode. 
 

 
 

Fig.6. Variations of specific loss with wave number for skew symmetric mode. 
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Fig.7. Variations of amplitude of tangential displacement with thickness of the layer. 
 

 
 

Fig.8. Variations of amplitude of normal displacement with thickness of the layer. 
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Fig.9. Variations of amplitude of temperature distribution with thickness of the layer. 
 
8. Conclusion 
 
 The propagation of Rayleigh-Lamb waves in an infinite layer of a viscoelastic transversely isotropic 
medium in the context of thermoelasticity with GN theory of type-II and III deriving the secular equation, is 
investigate. The waves can propagate long distances and are used for damage detection of plate-like 
structures. They are extremely useful for detection of cracks in thin sheet materials and tubular products, 
since these waves will travel several meters in steel and so are useful to scan plates, wires and tubes. Lamb 
waves are the most widely used guided waves for damage detection. 
 
Nomenclature 
 
 *  c  – specific heat at constant strain 

 , ,ijkl ijkl ijklc c c   – are characteristic constants of material 

 * *
ij i ijK k   – (i not summed) is characteristic constants of the theory 

 ij i ijK k   – (i not summed) is a thermal conductivity 

 L, , oot T  – are parameters having dimensions of length, sec and oC  respectively 

 T – temperature change of a material particle 
 oT  – reference uniform temperature of the body 

 ijt  – stress tensor 
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 iu  – component of displacement vector 

 ij i ij     – (i not summed) the thermal elastic coupling tensor 

   – bulk mass density 
 
The comma notation is used for spatial derivatives and superimposed dot represents time differentiation. 
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