PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimized jk-nearest neighbor based online signature verification and evaluation of main parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose an enhanced jk-nearest neighbor (jk-NN) algorithm for online signature verification. The effect of its main parameters is evaluated and used to build an optimized system. The results show that the jk-NN classifier improves the verification accuracy by 0.73–10% as compared to a traditional one-class k-NN classifier. The algorithm achieved reasonable accuracy for different databases: a 3.93% average error rate when using the SVC2004, 2.6% for the MCYT-100, 1.75% for the SigComp’11, and 6% for the SigComp’15 databases. These results followed a state-of-the-art accuracy evaluation where both forged and genuine signatures were used in the training phase. Another scenario is also presented in this paper by using an optimized jk-NN algorithm that uses specifically chosen parameters and a procedure to pick the optimal value for k using only the signer’s reference signatures to build a practical verification system for real-life scenarios where only these signatures are available. By applying the proposed algorithm, the average error rates that were achieved were 8% for SVC2004, 3.26% for MCYT-100, 13% for SigComp’15, and 2.22% for SigComp’11.
Wydawca
Czasopismo
Rocznik
Tom
Strony
539--551
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Budapest University of Technology and Economics, 1111 Budapest, Muegyetem rkp. 3., Hungary
autor
  • Budapest University of Technology and Economics, 1111 Budapest, Muegyetem rkp. 3., Hungary
Bibliografia
  • [1] Abdelrahaman A.A.A., Abdallah M.E.A.: K-nearest neighbor classifier for signature verification system. In: 2013 International Conference on Computing, Electrical and Electronic Engineering (ICCEEE), pp. 58–62, IEEE, 2013.
  • [2] Azmi A.N., Nasien D., Omar F.S.: Biometric signature verification system based on freeman chain code and k-nearest neighbor, Multimedia Tools and Applications, vol. 76(14), pp. 15341–15355, 2017.
  • [3] Cabral G.G., Oliveira A.L.I., Cah´u C.B.G.: Combining nearest neighbor data description and structural risk minimization for one-class classification, Neural Computing and Applications, vol. 18(2), pp. 175–183, 2009.
  • [4] Cover T., Hart P.: Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol. 13(1), pp. 21–27, 1967.
  • [5] Gao L., Zhang L., Liu C., Wu S.: Handling imbalanced medical image data: A deep-learning-based one-class classification approach, Artificial Intelligence in Medicine, vol. 108, 101935, 2020.
  • [6] Goldin D.Q., Kanellakis P.C.: On similarity queries for time-series data: constraint specification and implementation. In: International Conference on Principles and Practice of Constraint Programming, pp. 137–153, Springer, 1995.
  • [7] Guru D.S., Prakash H.N.: Online Signature Verification and Recognition: An Approach Based on Symbolic Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31(6), pp. 1059–1073, 2008.
  • [8] Harfiya L.N., Widodo A.W., Wihandika R.C.: Offline signature verification based on pyramid histogram of oriented gradient features. In: 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 23–28, IEEE, 2017.
  • [9] Isha I., Pooja P., Varsha V.: Offline Signature Verification based on Euclidean distance using Support Vector Machine, International Journal of Advanced Engineering, Management and Science, vol. 2(8), 2016.
  • [10] Jain A., Singh S.K., Singh K.P.: Handwritten signature verification using shallow convolutional neural network, Multimedia Tools and Applications, vol. 79, pp. 19993–20018, 2020.
  • [11] Khan S.S., Ahmad A.: Relationship between Variants of One-Class Nearest Neighbors and Creating Their Accurate Ensembles, IEEE Transactions on Knowledge and Data Engineering, vol. 30(9), pp. 1796–1809, 2018.
  • [12] Kholmatov A., Yanikoglu B.: SUSIG: an on-line signature database, associated protocols and benchmark results, Pattern Analysis and Applications, vol. 12(3), pp. 227–236, 2009.
  • [13] Komiya Y., Ohishi T., Matsumoto T.: A Pen Input On-Line Signature Verifier Integrating Position, Pressure and Inclination Trajectories, IEICE Transactions on Information and Systems, vol. 84(7), pp. 833–838, 2001.
  • [14] Liu Y., Yang Z., Yang L.: Online Signature Verification Based on DCT and Sparse Representation, IEEE Transactions on Cybernetics, vol. 45(11), pp. 2498–2511, 2014.
  • [15] Liwicki M., Malik M.I., van den Heuvel C.E., Chen X., Berger C., Stoel R., Blumenstein M., Found B.: Signature Verification Competition for Online and Offline Skilled Forgeries (SigComp2011). In: 2011 International Conference on Document Analysis and Recognition, pp. 1480–1484, IEEE, 2011.
  • [16] Malallah F.L., Ahmad S.M.S., Adnan W.A.W., Arigbabu O.A., Iranmanesh V., Yussof S.: Online Handwritten Signature Recognition by Length Normalization Using Up-Sampling and Down-Sampling, International Journal of Cyber-Security and Digital Forensics (IJCSDF), vol. 4(1), pp. 302–313, 2015.
  • [17] Malik M.I., Ahmed S., Marcelli A., Pal U., Blumenstein M., Alewijns L., Liwicki M.: ICDAR2015 competition on signature verification and writer identification for on-and off-line skilled forgeries (SigWIcomp2015). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1186–1190, IEEE, 2015.
  • [18] Manevitz L.M., Yousef M.: One-Class SVMs for Document Classification, Journal of Machine Learning Research, vol. 2, pp. 139–154, 2001.
  • [19] Nanni L.: Experimental Comparison of One-Class Classifiers for Online Signature Verification, Neurocomputing, vol. 69(7–9), pp. 869–873, 2006.
  • [20] Okawa M.: Online signature verification using single-template matching with time-series averaging and gradient boosting, Pattern Recognition, vol. 102, pp. 107–227, 2020.
  • [21] Ortega-Garcia J., Fierrez-Aguilar J., Simon D., Gonzalez J., Faundez-Zanuy, M., Espinosa V., Satue A., Hernaez I., Igarza J., Vivaracho C., Escudero D., Moro Q.-I.: MCYT baseline corpus: a bimodal biometric database, IEE Proceedings – Vision, Image and Signal Processing, vol. 150(6), pp. 395–401, 2003. https://digital-library.theiet.org/content/journals/10.1049/ip-vis 20031078.
  • [22] Pippin C.E.: Dynamic Signature Verification using Local and Global Features. Technical report, Georgia Institute of Technology, 2004.
  • [23] Rodr´ıguez-Ruiz J., Mata-S´anchez J.I., Monroy R., Loyola-Gonz´alez O., L´opez-Cuevas A.: A one-class classification approach for bot detection on Twitter, Computers & Security, vol. 91, 101715, 2020.
  • [24] Saleem M., Kovari B.: Performance Evaluation of the JK-nearest Neighbor Online Signature Verification Parameters. In: 2021 4th International Conference on Data Storage and Data Engineering, pp. 1–5, 2021.
  • [25] Saxena A., Tripathi K., Khanna A., Gupta D., Sundaram S.: Emotion Detection through EEG Signals using FFT and Machine Learning Techniques. In: International Conference on Innovative Computing and Communications, pp. 543–550, Springer, 2020.
  • [26] Tolosana R., Vera-Rodriguez R., Ortega-Garcia J., Fierrez J.: Preprocessing and Feature Selection for Improved Sensor Interoperability in Online Biometric Signature Verification, IEEE Access, vol. 3, pp. 478–489, 2015.
  • [27] Vargas-Bonilla J.F., Ferrer M.A., Travieso C.M., Alonso J.B.: Off-Line Signature Verification Based on High Pressure Polar Distribution. In: Proceedings of the 11th International Conference on Frontiers in Handwriting Recognition, ICFHR 2008, pp. 373–378, 2008.
  • [28] Vickram P., Sri Krishna A., Swapna D.: Offline Signature Verification Using Support Local Binary Pattern, International Journal of Artificial Intelligence and Applications (IJAIA), vol. 7(6), pp. 85–94, 2016.
  • [29] Wahyono, Jo K.: LED Dot matrix text recognition method in natural scene, Neurocomputing, vol. 151(Part 3), pp. 1033–1041, 2015.
  • [30] Winston J.J., Hemanth D.J.: Moments-Based Feature Vector Extraction for Iris Recognition. In: International Conference on Innovative Computing and Communications, pp. 255–263, Springer, 2020.
  • [31] Yang L., Cheng Y., Wang X., Liu Q.: Online handwritten signature verification using feature weighting algorithm relief, Soft Computing, vol. 22(23), pp. 7811–7823, 2018.
  • [32] Yeung D.Y., Chang H., Xiong Y., George S., Kashi R., Matsumoto T., Rigoll G.: SVC2004: First International Signature Verification Competition. In: D. Zhang, A.K. Jain (eds.), Biometric Authentication. ICBA 2004. Lecture Notes in Computer Science, vol. 3072, pp. 16–22, Springer, Berlin, Heidelberg, 2004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64c703d4-3942-439a-b877-169d09e2e951
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.