PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of Vacuum Packed Particles with adaptable properties in acoustic applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present possibilities of using a new type of granular media in acoustics as innovative sound absorbers. Most materials of this type have a porous or fibrous structure. It is constant, and once manufactured, does not easily change its configuration. The examined material – Vacuum Packed Particles (VPP) is of a changeable structure. It can be assumed that the acoustical absorption of such structures can be modified and partially adjusted by an external factor. First steps in an experimental approach have been made – the acquired results are optimistic. Additional tests are being planned to confirm the observed phenomenon and to apply VPP as novel materials in acoustics. Basing on the preliminary experimental tests, it can be concluded that the considered structures could become a significant part of a multilayered structure which would have controllable sound absorption properties.
Rocznik
Strony
403--416
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Machine Design Fundamentals, Warsaw, Poland
Bibliografia
  • 1. Allard J.F., 1993, Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials, Elsevier, Amsterdam
  • 2. Attenborough K., 1983, Acoustical characteristics of rigid fibrous absorbents and granular materials, Journal of the Acoustical Society of America, 73, 785-799
  • 3. Bajkowski J., Jasiński M., Mączak J., Radkowski S., Zalewski R., 2012, The active magnetorheological support as an element of damping of vibrations transferred from the ground to large-scale structure supports, Key Engineering Materials, 518, 350-357
  • 4. Bajkowski J.M., Zalewski R., 2014, Transient response analysis of a steel beam with vacuum packed particles, Mechanics Research Communications, 60, 1-6
  • 5. Besset S., Ichchou M.N., 2011, Acoustic absorption material optimisation in the mid-high frequency range, Applied Acoustics, 72, 632-638
  • 6. Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M.R., Lipson H., Jaeger H.M., 2010, Universal robotic gripper based on the jamming of granular material, Proceedings of the National Academy of Sciences of the United States of America, 107, 18809-18814
  • 7. Ersoy S., Kuc¸uk H. , 2009, Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties, Applied Acoustics, 70, 1, 215-220
  • 8. Fatima S., Mohanty A.R., 2011, Acoustical and fire-retardant properties of jute composite materials, Applied Acoustics, 72, 2/3, 108-114
  • 9. Gawdzińska K., Chybowski L., Bejger A., Krile S., 2016, Determination of technological parameters of saturated composites based on SiC by means of a model liquid, Metalurgija, 55, 4, 659-662
  • 10. Gawdzińska K., Chybowski L., Przetakiewicz W., 2015, Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality, Archives of Civil and Mechanical Engineering, 16, 3, 553-563
  • 11. Hong Z., Bo L., Guangsu H., Jia H., 2007, A novel composite sound absorber with recycled rubber particles, Journal of Sound and Vibration, 304, 1/2, 400-406
  • 12. ISO 10534-2, Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method
  • 13. Karliński J., Ptak M., Działak P., Rusiński E., 2014, Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE, Archives of Civil and Mechanical Engineering, 14, 342-353
  • 14. Karliński J., Ptak M., Działak P., Rusiński E., 2016, The approach to mining safety improvement: accident analysis of an underground machine operator, Archives of Civil and Mechanical Engineering, 16, 3, 503-512
  • 15. Pyrz M., Zalewski R,, 2010, Modeling of granular media submitted to internal underpressure, Mechanics Research Communications, 37, 2, 141-144
  • 16. Szmidt T., Zalewski R., 2014, Inertially excited beam vibrations damped by Vacuum Packed Particles, Smart Materials and Structures, 23, 2014, 105026 (9 pp)
  • 17. Swift M.J., Briˇs P., Horoshenkov K.V., 1999, Acoustic absorption in re-cycled rubber granulate, Applied Acoustics, 57, 203-212
  • 18. Voronina N.N., Horoshenkov K.V,, 2003, A new empirical model for the acoustic properties of loose granular media, Applied Acoustics, 64, 415-432
  • 19. Voronina N.N., Horoshenkov K.V., 2004, Acoustic properties of unconsolidated granular mixes, Applied Acoustics, 64, 673-691
  • 20. Wilson D.K., 1997, Simple, relaxational models for the acoustical properties of porous media, Applied Acoustics, 50, 3, 171-188
  • 21. Yamamoto T., Maruyama S., Nishiwaki S., Yoshimura M,, 2009, Topology design of multi-material soundproof structures including poroelastic media to minimize sound pressure levels, Computer Methods in Applied Mechanics and Engineering, 1439-1455
  • 22. Zalewski R., 2010, Constitutive model for special granular structures, International Journal of Non-Linear Mechanics, 45, 3, 279-285
  • 23. Zalewski R., 2013, Modeling and Research of the Underpressure Influence on Mechanical Properties of Vacuum Packed Particles (in Polish), WKŁ, Warsaw, ISBN 978-83-206-1851-8
  • 24. Zalewski R., Nachman J., Shillor M., Bajkowski J., 2014, Dynamic model for a magnetorheological damper, Applied Mathematical Modelling, 38, 9/10, 2366-2376
  • 25. Zalewski R., Szmidt T., 2014, Application of Special Granular Structures for semi-active damping of lateral beam vibrations, Engineering Structures, 65, 13-20
  • 26. Zieliński T.G., 2011, Numerical investigation of active porous composites with enhanced acoustic absorption, Journal of Sound and Vibration, 5292-5308
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64c624b5-4f0f-493f-ad64-d522ff3ee55f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.