PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ), increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.
Rocznik
Strony
59--70
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Tsinghua University, Department of Precision Instrument, Beijing, 10084, China
autor
  • Tsinghua University, Department of Precision Instrument, Beijing, 10084, China
autor
  • Tsinghua University, Department of Precision Instrument, Beijing, 10084, China
Bibliografia
  • [1] Suzuki, T., Kanno, I., Loverich, J.J., Kotera, H., Wasa, K. (2006). Characterization of Pb (Zr, Ti) O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications. Sensors and Actuators A: Physical, 125(2), 382‒386.
  • [2] Kim, S.H., Leung, A., Koo, C.Y., Kuhn, L., Jiang, W., Kim, D.J., Kingon, A.I. (2012). Lead-free (Na0.5 K0.5)(Nb0.95 Ta0.05) O3-BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices. Materials Letters, 69, 24‒26.
  • [3] Joost, U., Juganson, K., Visnapuu, M., Mortimer, M., Kahru, A., Nommiste, E., Ivask, A. (2015). Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology B: Biology, 142, 178‒185.
  • [4] Juez, R.G., Boffa, V., Blank, D.H., Johan, E. (2008). Preparation of self-supporting mesostructured silica thin film membranes as gateable interconnects for microfluidics. Journal of Membrane Science, 323(2), 347‒351.
  • [5] Mostowfi, F., Czarnecki, J., Masliyah, J., Bhattacharjee, S. (2008). A microfluidic electrochemical detection technique for assessing stability of thin films and emulsions. Journal of colloid and interface science, 317(2), 593‒603.
  • [6] Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L. (1961). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of applied physics, 32(9), 1679‒1684.
  • [7] Cielo, P., Utracki, L.A., Lamontagne, M. (1986). Thermal-diffusivity measurements by the convergingthermal- wave technique. Canadian Journal of Physics, 64(9), 1172‒1177.
  • [8] Cernuschi, F., Russo, A., Lorenzoni, L., Figari, A. (2001). In-plane thermal diffusivity evaluation by infrared thermography. Review of scientific instruments, 72(10), 3988‒3995.
  • [9] Kim, S.W., Kim, J.C., Lee, S.H. (2006). Analysis of thermal diffusivity by parameter estimation in converging thermal-wave technique. International journal of heat and mass transfer, 49(3), 611‒616.
  • [10] Murphy, F., Kehoe, T., Pietralla, M., Winfield, R., Floyd, L. (2005). Development of an algorithm to extract thermal diffusivity for the radial converging wave technique. International journal of heat and mass transfer, 48(7), 1395‒1402.
  • [11] Kim, J.C., Kim, D.J., Kim, D.S., Kim, S.W., Troitsky, O.Y. (2001). One-level, two-point method for estimation of thermal diffusivity by the converging thermal-wave technique. International journal of thermophysics, 22(3), 933‒942.
  • [12] Lu, G., Swann, W.T. (1991). Measurement of thermal diffusivity of polycrystalline diamond film by the converging thermal wave technique. Applied physics letters, 59(13), 1556‒1558.
  • [13] Correa, P.R., Pereira, T.M., Veloso, M.N., Zezell, D.M. (2012) Development of a communication interface to determinate the thermal diffusivity as a function of temperature by infrared thermography. 11th International Conference on Quantitative Infrared Thermography, Naples, Italy.
  • [14] Joo, Y., Park, H., Chae, H.B., Lee, J.K., Baik, Y.J. (2001). Measurements of thermal diffusivity for thin slabs by a converging thermal wave technique. International journal of thermophysics, 22(2), 631‒643.
  • [15] Li, C., Xu, C., Gui, C., Fox, M.D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 19(12), 3243‒3254.
  • [16] Yang, F., Qin, W., Xie, Y., Wen, T., Gu, J. (2012). A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE. Biomedical engineering online, 11(1), 82.
  • [17] Jin-qing, L., Wei-wei, L. (2011). Adaptive Medical Image Segmentation Algorithm Combined with DRLSE Model. Procedia Engineering, 15, 2634‒2638.
  • [18] Usha, R.N., Pv, S.D., Venkata, R.D.D., Nalini, K. (2011). Optimal Segmentation of Brain Tumors using DRLSE Levelset. International Journal of Computer Applications, 29(9), 6‒11.
  • [19] Rianto, I., Pranowo, P. (2013). Distance Regularized Level Set Evolution for Medical Image Segmentation. The 1st Conference on Information Technology, Computer, and Electrical Engineering (CITACEE), 1, 49‒51.
  • [20] Chen, F.F. (2007) Fundamental Technology for Instrument Design. Beijing: Tsinghua University press, 424‒425.
  • [21] Incropera, F.P. (2011) Fundamentals of Heat and Mass Transfer. John Wiley & Sons, Ltd, 905‒908.
Uwagi
EN
This work was financially supported by National Basic Research Program of China (973 Program) (No. 2012CB934103).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64bd66bd-8fab-43b1-8c82-e7142faa98d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.