PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of noise generated by an axial fan installed in a pipeline

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of numerical calculations of noise generated by an axial fan installed in a ventilation duct with a circular cross-section. The research takes into account the installation of the axial fan due to the distance of the rotor from the curvature of the pipeline. The uRANS turbulent flow modeling methods were used in the calculations. The uRANS stands for the Navier-Stokes equation with Reynolds averaging in the version that takes into account the non-stationarity of the flow. The purpose of the work is to determine the sound power in the vicinity of the sound source. The decisive parameters affecting the noise emitted will be the length of the installation in front of and behind the rotor. The propagation of acoustic disturbances in the far field was modeled using the aeroacoustic analogy of Ffowcs-Williams and Hawkings. Based on the calculations, the directional characteristics of the sound source were determined.
Rocznik
Strony
art. no. 2022104
Opis fizyczny
Bibliogr. 12 poz., il. kolor., 1 rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. M. Konstantinov, C. Wagner; Numerical simulation of the sound generation and the sound propagation from air intakes in an aircraft cabin; New results in numerical and experimental fluid mechanics XI, Cham: Springer, 2018.
  • 2. E. Sundström, B. Semlitsch, M. Mihăescu; Acoustic signature of flow instabilities in radial compressors; Journal of Sound and Vibration, 2018, 434, 221-236.
  • 3. J. Al-Am, V. Clair, A. Giauque, J. Boudet, F. Gea-Aguilera; A parametric study on the les numerical setup to investigate fan/OGV broadband noise; International Journal of Turbomachinery, Propulsion and Power, 2021, 6(2), 12.
  • 4. C. Kissner, S. Guérin, P. Seeler, M. Billson, P. Chaitanya, P. Carrasco Laraña, H. de Laborderie, B. François, K. Lefarth, D. Lewis, G. Montero Villar, T. Nodé-Langlois; Acat1 benchmark of rans-informed analytical methods for fan broadband noise prediction - part I - influence of the rans simulation; Acoustics, 2020, 2(3), 539-578.
  • 5. F.R. Menter; Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows; AAIA Paper 93-2906, 1993.
  • 6. Ansys Fluent: Theory Guide; Ansys Inc., 2015.
  • 7. J. E. Ffowcs-Williams, D. L. Hawkings; Sound Generation by Turbulence and Surfaces in Arbitrary Motion; Proc. Roy. Soc. London, 1969, A264:321-342.
  • 8. M.J. Lighthill; On Sound Generated Aerodynamically. Proc. Roy. Soc. London, 1952, A211:564-587.
  • 9. H. Versteeg, W. Malalasekera; An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Harlow, England: Pearson Education Limited, 2011.
  • 10. H. Kumawat; Modeling and simulation of axial fan using CFD; International Journal of Mechanical, Industrial and Aerospace Sciences, 2014, 8, 11, 1892-1896. DOI:10.5281/zenodo.1337905
  • 11. S. Fortuna; Wentylatory; Podstawy teoretyczne, zagadnienia konstrukcyjno-eksploatacyjne i zastosowanie; Kraków, Techwent, 1999.
  • 12. J. Foss, D. Neal, M. Henner and S. Moreau; Evaluating CFD Models of Axial Fans by Comparisons with Phase-Averaged Experimental Data; Proceedings of the SAE Vehicle Thermal Management Systems Conference, Nashville, 2001, 363, 83-92.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64bcbd9d-ae03-4eb1-aaf6-0658abd203eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.