Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This Travel Time Reliability (TTR) is a crucial aspect of transportation planning and management. It affects individual decisions, scheduling, and productivity, and has significant financial implications for passengers and goods. Traffic congestion is a major factor impacting TTR, which can be classified as recurring (predictable) or non-recurring (unanticipated). Researchers have developed various definitions and measures for TTR and Planning Time Index (PTI) is one of these indexes. Proper communication of TTR is essential, and numerical measures like PTI are commonly used to convey this information to travelers. Machine Learning (ML) models, particularly neural networks, have become increasingly popular for TTR estimation due to their ability to handle complex relationships and high-dimensional data. This study proposes using Fitrnet, a feedforward fully connected neural network, for predicting TTR at a network level. While Fitrnet has been used in other fields of engineering, its application in TTR estimation is novel. The study uses a dataset from the UK government covering the Strategic Road Network from April 2015 to March 2021. Results show that a Fitrnet model with 5 hidden layers can accurately predict PTI, with MAPE values below 10% in most cases, demonstrating the effectiveness of Fitrnet for TTR prediction in smaller datasets. The study contributes to the growing body of research on TTR modeling by proposing a new approach using Fitrnet and applying it to a previously unused dataset.
Rocznik
Tom
Strony
79--95
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- School of Civil Engineering, Iran University of Science and Technology, Dardasht Street, Tehran, Iran
- School of Civil Engineering, Iran University of Science and Technology, Dardasht Street, Tehran, Iran
autor
- Faculty of School of Civil Engineering, Iran University of Science and Technology, Dardasht Street, Tehran, Iran
autor
- Faculty of School of Mathematics and Computer Science, Damghan University, Cheshmeh Ali Road, Damghan, Iran
autor
- Faculty of Transport Modelling and Simulation, “Friedrich List” Faculty of Transport and Traffic Sciences, Technische Universität Dresden, Nöthnitzer Street, Dresden, Germany
Bibliografia
- 1. National Academies of Sciences, Medicine (US)., Division on Engineering, Physical Sciences, Medicine Division, Division of Behavioral, Social Sciences, Computer Science, Telecommunications Board, Board on Health Care Services and Committee on National Statistics. 2022. “Evaluating Alternative Operations Strategies to Improve Travel Time Reliability”. Transportation Research Board.
- 2. TavasoliHojati A., L. Ferreira, S. Washington, P. Charles, A. Shobeirinejad. 2016. “Modelling the impact of traffic incidents on travel time reliability”. Transportation research part C: emerging technologies. 65: 49-60. DOI: 10.1016/j.trc.2016.06.013.
- 3. Polus A., J.L. Shofer. 1976. “Analytical study of freeway reliability”. Transportation Engineering Journal of ASCE 102(4): 857-870. DOI: 10.1061/TPEJAN.0000606.
- 4. Systematics C. 2005. “Traffic Congestion and Reliability: Trends and Advanced Strategies for Congestion Mitigation”. No. FHWA-HOP-05-064. United States. Federal Highway Administration.
- 5. Shaw T. 2003. “Performance measures of operational effectiveness for highway segments and systems”. Transportation Research Board.
- 6. Kuhn B., L. Higgins, A. Nelson, M. Finely, G. Ullman, S. Chrysler, K. Wunderlich, V. Shah, C. Dudek. 2014. “Lexicon for conveying travel time reliability information”. Transportation Research Board.
- 7. Mahmassani H.S., J. Kim, T. Hou, A. Talebpour, Y. Stogios, A. Brijmohan, P. Vovsha. 2014. “Incorporating reliability performance measures into operations and planning modeling tools”. Transportation Research Board.
- 8. Wakabayashi H. 2011. “Travel time reliability indices for highway users and operators”. In: Network Reliability in Practice: Selected Papers from the Fourth International Symposium on Transportation Network Reliability. Springer. DOI: 10.1007/978-1-4614-0947-2_6
- 9. Zang Z., X. Xu, K. Qu, R. Chen, A. Chen. 2022. “Travel time reliability in transportation networks: A review of methodological developments”. Transportation Research Part C: Emerging Technologies 143: 103866. DOI: 10.1016/j.trc.2022.103866.
- 10. Hang J., X. Zhou, J. Wang. 2020. “Modeling Traffic Function Reliability of Signalized Intersections with Control Delay”. Advances in Civil Engineering 2020: 1-13. DOI: 10.1155/2020/8894281.
- 11. Zhu Z., A. Mardan, S. Zhu, H. Yang. 2021. “Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model”. Transportation research part B: methodological 143: 48-64. DOI: 10.1016/j.trb.2020.11.005.
- 12. Lomax T., D. Schrank, S. Turner, R. Margiotta. 2003. “Selecting travel reliability measures”. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=95392d6a899f71fd219751a3e3bd92f4ae13805c.
- 13. Emam E.B., H. Al-Deek. 2006. “Using real-life dual-loop detector data to develop new methodology for estimating freeway travel time reliability”. Transportation research record 1959(1): 140-150. DOI: 10.1177/0361198106195900116.
- 14. Polus A. 1979. “A study of travel time and reliability on arterial routes”. Transportation 8(2): 141-151. DOI: 10.1007/BF00167196.
- 15. Taylor M.A. 2017. “Fosgerau's travel time reliability ratio and the Burr distribution”. Transportation Research Part B: Methodological 97: 50-63. DOI: 10.1016/j.trb.2016.12.001.
- 16. Zhang Z., Q. He, J. Gou, X. Li. 2019. “Analyzing travel time reliability and its influential factors of emergency vehicles with generalized extreme value theory”. Journal of Intelligent Transportation Systems 23(1): 1-11. DOI: 10.1080/15472450.2018.1473156.
- 17. Guo F., H. Rakha, S. Park. 2010. “Multistate model for travel time reliability”. Transportation research record 2188(1): 46-54. DOI: 10.3141/2188-06.
- 18. Rahmani M., E. Jenelius, H.N. Koutsopoulos. 2015. “Non-parametric estimation of route travel time distributions from low-frequency floating car data”. Transportation Research Part C: Emerging Technologies 58: 343-362. DOI: 10.1016/j.trc.2015.01.015.
- 19. Chen M., G. Yu, P. Chen, Y. Wang. 2017. “A copula-based approach for estimating the travel time reliability of urban arterial”. Transportation Research Part C: Emerging Technologies 82: 1-23. DOI: 10.1016/j.trc.2017.06.007.
- 20. Harrell F.E., Kl. Lee, DB. Matcher. 1985. “Regression models for prognostic prediction: advantages, problems, and suggested solutions”. Cancer treatment reports 69(10): 1071-1077.
- 21. Elefteriadou L., X. Cui. 2007. “A framework for defining and estimating travel time reliability’. Transportation Research Board 86th Annual Meeting. Washington DC, United States. 2007-1-21 to 2007-1-25.
- 22. Charlotte C., L.M Helene, B. Sandra. 2017. “Empirical estimation of the variability of travel time”. Transportation Research Procedia 25: 2769-2783. DOI: 10.1016/j.trpro.2017.05.225.
- 23. Kwon J., T. Barkley, R. Hranac, K. Petty, N. Compin. 2011. “Decomposition of travel time reliability into various sources: incidents, weather, work zones, special events, and base capacity’. Transportation Research Record 2229(1): 28-33. DOI: 10.3141/2229-04.
- 24. Zheng F., J. Li, H. VanZuylen, X. Liu, H. Yang. 2018. “Urban travel time reliability at different traffic conditions”. Journal of Intelligent Transportation Systems 22(2): 106-120. DOI: 10.1080/15472450.2017.1412829.
- 25. Zhang X., M. Zhao, J. Appiah, M. Fontaine. 2022. “Prediction of travel time reliability on interstates using linear quantile mixed models”. Transportation research record 2677(2): 774-791. DOI: 10.1177/03611981221108380.
- 26. Zhang X., M. Chen. 2019. “Quantifying the impact of weather events on travel time and reliability”. Journal of advanced transportation 2019(1): 8203081. DOI: 10.1155/2019/8203081.
- 27. Zhang X., Z. Mo, A. justice, F. Michael. 2021. “Methods to Analyze and Predict Interstate Travel Time Reliability”. Virginia Transportation Research Council (VTRC). Available at: https://rosap.ntl.bts.gov/view/dot/57307.
- 28. Babiceanu S., S. Lahiri. 2022. “Methodology for Predicting MAP-21 Interstate Travel Time Reliability Measure Target in Virginia”. Transportation Research Record 2676(8): 253-266. DOI: 10.1177/03611981221083290.
- 29. Wu Z., L. Rilett, W. Ren. 2022. “New methodologies for predicting corridor travel time mean and reliability”. International Journal of Urban Sciences 26(3): 517-540. DOI: 10.1080/12265934.2021.1899844.
- 30. Zhao, M., X. Zhang, J. Appiah, M. Fontaine. 2024. “Travel Time Reliability Prediction Using Random Forests”. Transportation Research Record 2678(3): 531-545. DOI: 10.1177/03611981231182146.
- 31. Li, H., Z. Wamg, X. Li, H. Wang, Y. Man, J. Shi, “Travel Time Probability Prediction Based on Constrained LSTM Quantile Regression”. Journal of Advanced Transportation 2023(1): 9910142. DOI: 10.1155/2023/9910142.
- 32. Sennefelder R.M., R. Martin-Clemente, R. Gonzalez-Carvajal, D. Trifonov. 2023. “Data Driven Energy Economy Prediction for Electric City Buses Using Machine Learning”. IEEE Access 11: 97057-97071. DOI: 10.1109/ACCESS.2023.3311895.
- 33. Oh S., C. Kim, Y. Lee, H. Park, J. Lee, S. Kim, J. Kim. 2022. “Analysis of the exhaust hydrogen characteristics of high-compression ratio, ultra-lean, hydrogen spark-ignition engine using advanced regression algorithms”. Applied Thermal Engineering 215: 119036. DOI: 10.1016/j.applthermaleng.2022.119036.
- 34. Shahbazi, M., N.A. Smith, M. Marzband, H.R. Habib. 2023. “A Reliability-Optimized Maximum Power Point Tracking Algorithm Utilizing Neural Networks for Long-Term Lifetime Prediction for Photovoltaic Power Converters”. Energies 16(16): 6071. DOI: 10.3390/en16166071.
- 35. Cousins D.S., W.G. Otto, A.H. Rony, K.S. Pedersen, J.E. Aston, D.B. Hodge. 2022. “Near-infrared spectroscopy can predict anatomical abundance in corn Stover”. Frontiers in Energy Research 10: 836690. DOI: 10.3389/fenrg.2022.836690.
- 36. De Gan B.M., M. Loxham, C. Vanderwel. 2022. “Simulation of outdoor air pollution in Southampton”. Proceedings of the International Conference on Evolving Cities. DOI: 10.55066/proc-icec.2022.103.
- 37. Hadjidemetriou G.M., J. Teal, L. Kapetas, A.K. Parlikad. 2021. “Flexible planning for intercity multimodal transport infrastructure”. Journal of Infrastructure Systems 28(1): 05021010. DOI: 10.1061/(ASCE)IS.1943-555X.0000664.
- 38. Greenhalgh P., H.M. King, K. Muldoon-Smith, J. Ellis. 2021. “The new distribution: Spatio-temporal analysis of large distribution warehouse premises in England and Wales”. Urban Planning 6(3): 399-414. DOI: 10.17645/up.v6i3.4222.
- 39. O'Garra T., R. Fouquet. 2022. “Willingness to reduce travel consumption to support a low-carbon transition beyond COVID-19”. Ecological Economics 193: 107297. DOI: 10.1016/j.ecolecon.2021.107297.
- 40. Gorbunov R.N., Z.V. Gorbunova, V.S. Kolchin, A.Y. Mikhailov, Z.T. Pirov.2019. “Analysis of the impact of the sample size on the accuracy of determining the travel time and buffer indices”. IOP Conference Series: Materials Science and Engineering 632: 012042. DOI: 10.1088/1757-899X/632/1/012042.
- 41. Oakley M. 2019. “Moving Forward Together: Delivering the transport infrastructure that businesses need”. Available at: https://wpieconomics.com/wp-content/uploads/2019/09/190911_Critical-Infrastructure_Web_Spreads-Final.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64b7f351-f4a2-4df2-b175-c8c0521fc98b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.