PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the pad stiffness effects on the initiation of brake squeal phenomenon

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of this study is to investigate pad stiffness effects on the instability of a nonlinear brake squeal model. Hence, a nonlinear mathematical model is developed. The nonlinear model is linearized to check the system stability through complex eigenvalue analysis. The results of linear stability analyses are compared to the numerical solution of the nonlinear model, and it is observed that the dynamic behavior predicted by the linear stability analysis is in accordance with the numerical solutions. Though, a discrepancy may occur at the predicted squeal frequencies with both approaches, especially at high pad stiffness levels.
Rocznik
Strony
219--232
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Istanbul Technical University, Department of Mechanical Engineering, Istanbul, Turkey
autor
  • Istanbul Technical University, Department of Mechanical Engineering, Istanbul, Turkey
Bibliografia
  • 1. Aronov V., D’Souza A.F., Kalpakjian S., Shareef I., 1984, Interactions among friction, wear, and system stiffness – Part 1: Effect of normal load and system stiffness, Journal of Tribology, 106, 54-59.
  • 2. Belhocine A., Ghazaly N.M., 2016, Effects of Young’s modulus on disc brake squeal using finite element analysis, International Journal of Acoustics and Vibration, 21, 3, 292-300.
  • 3. Dakel M., Sinou J.J., 2017, Stability and nonlinear self-excited friction-induced vibrations for a minimal model subjected to multiple coalescence patterns, Journal of Vibroengineering, 19, 1, 604-628.
  • 4. Ghorbel A., Zghal B., Abdennadher M., Walha L., Haddar M., 2020, Investigation of friction-induced vibration in a disk brake model, including mode-coupling and gyroscopic mechanisms, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234, 2-3, 887-896.
  • 5. Hochlenert D., 2009, Nonlinear stability analysis of a disc brake model, Nonlinear Dynamics, 58, 63-73.
  • 6. Hoffman N., Fischer M., Allgaier R., Gaul L., 2002, A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations, Mechanics Research Communications, 29, 4, 197-205.
  • 7. Jacobsson H., 2003, Aspects of disc brake judder, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217, 6, 419-430.
  • 8. Li Z., Ouyang H., Guan Z., 2016, Nonlinear friction-induced vibration of a slider-belt system, Journal of Vibration and Acoustics (ASME), 138, 4, 041006.
  • 9. Liu N., Ouyang H., 2020, Friction-induced vibration considering multiple types of nonlinearities, Nonlinear Dynamics, 102, 2057-2075.
  • 10. Kang J., 2018, Lyapunov exponent of friction-induced vibration under smooth friction curve, Journal of Mechanical Science and Technology, 32, 8, 3563-3567.
  • 11. Kinkaid N.M., O’Reilly O.M., Papadopoulos P., 2003, Automotive disc brake squeal, Journal of Sound and Vibration, 267, 105-166.
  • 12. Oberst S., Lai J.C.S., Marburg S., 2013, Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems, Journal of Sound and Vibration, 332, 2284-2299.
  • 13. Papinniemi A., Lai J.C.S., Zhao J.Y., Loader L., 2002, Brake squeal: A literature review, Applied Acoustics, 63, 391-400.
  • 14. Sawczuk W., Cañás A.M.R., Ulbrich D., Kowalczyk J., 2021a, Modeling the average and instantaneous friction coefficient of a disc brake on the basis of bench tests, Materials, 14, 16, 4766.
  • 15. Sawczuk W., Ulbrich D., Kowalczyk J., Merkisz-Guranowska A., 2021b, Evaluation of wear of disc brake friction linings and the variability of the friction coefficient on the basis of vibroacoustic signals, Sensors, 21, 17, 5917.
  • 16. Sen O.T., Singh R., 2021, Dynamics of a simplified nonlinear model offering insights into the hammering type brake squeal initiation process, Noise Control Engineering Journal, 69, 3, 243-261.
  • 17. Sinou J.J., 2010, Transient non-linear dynamic analysis of automotive disc brake squeal - On the need to consider both stability and nonlinear analysis, Mechanics Research Communications, 37, 96-105.
  • 18. Stojanovic N., Belhocine A., Abdullah O.I., Grujic I., 2022, The influence of the brake pad construction on noise formation, people’s health and reduction measures, Environmental Science and Pollution Research, 1-12.
  • 19. Wang H., Liu X., Shan Y., He T., 2014, Nonlinear behavior evolution and squeal analysis of disc brake based on different friction models, Journal of Vibroengineering, 16, 5, 2593-2609.
  • 20. Zhang Z., Oberst S., Lai J.C.S., 2016, On the potential of uncertainty analysis for prediction of brake squeal propensity, Journal of Sound and Vibration, 377, 123-132.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64b627c3-49a7-4def-8504-4d7a115efc19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.