PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random matrices by MA models and compound free Poisson laws

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, Pfaffel and Schlemm have investigated the Marchenko-Pastur type limit (n → ∞ and limn→∞ n/p = λ > 0) of the sample covariance matrix p−1Xnt Xn, where Xn is the p × n random matrix with dependence such that each row of Xn is given by a certain linear process. They have also determined the limit spectral measure by giving the functional equation for its Stieltjes transform. In this paper, we will see that such a limit spectral measure is a compound free Poisson law and, in the case where dependence is given by MA modeled Gaussian process, the sample covariance matrix can be regarded as compound Wishart matrix and, hence, gives the random matrix model for a compound free Poisson law. We will also give an application of compound Wishart matrix to the statistical data analysis of times series.
Rocznik
Strony
243--254
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Information Sciences, Ochanomizu Universitym, 2-1-1, Otsuka, Bunkyo, Tokyo 112-8610 Japan
autor
  • Department of Mathematics, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya-shi 448-8542 Japan
autor
  • Department of Information Sciences, Ochanomizu University, 2-1-1, Otsuka, Bunkyo, Tokyo 112-8610 Japan
Bibliografia
  • [1] Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, second edition, Springer Ser. Statist., Springer, New York 2010.
  • [2] T. Banica, S. T. Belinschi, M. Capitaine, and B. Collins, Free Bessel laws, Canad. J. Math. 63 (1) (2011), pp. 3-37.
  • [3] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles 1958.
  • [4] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables, and Entropy, Math. Surveys Monogr., Vol. 77, Amer. Math. Soc., Providence, RI, 2000.
  • [5] M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. 2 (1953), pp. 767-800.
  • [6] V. A. Marchenko and L. A. Pastur, Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. (N.S.) 72 (114) (4) (1967), pp. 507-536.
  • [7] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Math. Soc. Lecture Note Ser., Vol. 335, Cambridge University Press, Cambridge 2006.
  • [8] G. Pan, Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix, J. Multivariate Anal. 101 (6) (2010), pp. 1330-1338.
  • [9] O. Pfaffel and E. Schlemm, Eigenvalue distribution of large sample covariance matrices of linear processes, Probab. Math. Statist. 31 (2) (2011), pp. 313-329.
  • [10] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., Vol. 68, Cambridge University Press, Cambridge 1999.
  • [11] J. W. Silverstein, Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices, J. Multivariate Anal. 55 (2) (1995), pp. 331-339.
  • [12] R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298 (1) (1994), pp. 611-628.
  • [13] H. F. Trotter, Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock and Szegö, Adv. Math. 54 (1) (1984), pp. 67-82.
  • [14] D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66 (3) (1986), pp. 323-346.
  • [15] D. V. Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory 18 (2) (1987), pp. 223-235.
  • [16] D. V. Voiculescu, Lectures on free probability theory, in: Lectures on Probability Theory and Statistics, Lecture Notes in Math., Vol. 1738, Springer, Berlin 2000, pp. 279-349.
  • [17] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monogr. Ser., Vol. 1, Amer. Math. Soc., Providence, RI, 1992.
  • [18] J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20A (1/2) (1928), pp. 32-52.
  • [19] J. Xie, Limiting spectral distribution of normalized sample covariance matrices with p/n→0, Statist. Probab. Lett. 83 (2) (2013), pp. 543-550.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-64aee747-7493-487d-8191-891f870e47d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.